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Overview

This work evaluates an MRI-guided approach to compensate PETor SPECT emission data

for photon attenuation that utilizes a CT atlas and thus does not require an additional transmission

scan. The introductory chapter starts with a general description of imaging in nuclear medicine,

in particular molecular imaging and the desired combination of two tomographic modalities that

gain functional and morphological information in one single procedure. A perspective on the

future of dual-modality imaging in nuclear medicine follows, giving the motivation for the work

at hand. Hereafter, the basics of the emission tomographic imaging modalities and the degrading

physical phenomena which necessitate scatter and attenuation correction are presented. It is also

drawn how these corrections are incorporated in the processof image reconstruction. Several de-

veloped strategies of prior art to derive the attenuation map used for both scatter and attenuation

correction are delineated. The description of the evaluated approach and its mathematical model

follows, where the consecutive steps are considered one by one. Afterwards, the materials and

methods adopted for the evaluation and the results with the actual evaluation settings recorded

are pictured. An outlook regarding the presented MRI-guidedapproach and a brief summary of

the entire thesis completes this work, while a review of patents related to the approach can be

found in the appendix.
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Abstract

As the development of new imaging systems that combine PET and MRI is currently in

progress, novel ideas to compensate the captured emission data for photon scatter and attenua-

tion are being sought. A favored approach would utilize the morphological information gained

from the precisely co-registered MR image to derive a patient-specific non-uniform attenuation

map for accurate scatter and attenuation correction. Such aMRI-guided approach was evaluated

throughout this study. A pseudo CT of the patient is obtained by inferring CT numbers from a

CT atlas using automatic non-parametric registration with mutual information as distance mea-

sure and regularized by curvature. The obtained pseudo CT is then used to apply conventional

methods to derive the patient-specific attenuation map froma CT image. An initial evaluation of

the approach is given, where the optimal stiffness of the non-rigid transformation is determined

and the mean differences of pseudo CTs generated from different atlas CTs are recorded.

Abstract

Da die Entwicklung neuer bildgebender Systeme, die PET mit MRI vereinen, derzeit

voranschreitet, sind neue Ideen gefragt, um Einflüsse von Photonenstreuung und -abschwächung

in den aufgenommenen Emissionsdaten auszugleichen. Ein gewünschter Ansatz ẅurde sich der

morphologischen Information des präzise co-registrierten MR Bildes bedienen und daraus eine

Patienten spezifische, nicht uniforme Abschwächungskarte für exakte Streuungs- und

Abschẅachungskorrektur ableiten. Solch ein MRI-basierter Ansatzwurde in dieser Arbeit aus-

gewertet. Hierbei wird ein Pseudo CT des Patienten durch Einführen von CT Werten aus einem

CT Atlas unter Verwendung automatischer, nicht-parametrischer Registrierung mit Transinfor-

mation als Distanzmaß und Regularisierung basierend auf derKrümmung des Deformations-

feldes generiert. Das erhaltene Pseudo CT wird dann durch gebräuchliche CT Bild basierte

Methoden in eine Abschẅachungskartëubergef̈uhrt. Eine anf̈angliche Auswertung des Ansatzes

wurde durchgef̈uhrt, wobei die optimale Steifigkeit der nicht starren Transformation ermittelt

wurde und die mittlere Abweichung der erhaltenen Pseudo CTs dargelegt ist.
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Chapter 1

Imaging in Nuclear Medicine

In 1917, Johann Radon, an Austrian mathematician who later in1925 became full professor

in Erlangen, invented the Radon transform. However, Radon’s original paper was virtually un-

known by researchers in applied areas prior to the early 1970s. One of the investigators who

independently discovered much of Radon’s work was Allan M. Cormack, a physicist from Tufts

University. Nevertheless, Cormack pointed out in 1973 that Radon’s work was fundamental to

the problem of reconstruction from projections. The first computed tomographic pictures were

obtained 1970 by Godfrey N. Hounsfield. He and Allan M. Cormackwere honored for their

pioneer work with the Nobel Prize in physiology or medicine in 1979 [10].

To date, medical imaging modalities have attained widespread clinical acceptance as a stan-

dard of care for patients with known or suspected disease. The concept of predictive health

promotes the goal of using techniques such as molecular imaging in nuclear medicine to detect

and treat disease even before it has ever been expressed.

This introductory chapter explains the principles of molecular imaging. Afterwards, latest

imaging devices used in nuclear medicine that combine two different modalities into a single

machine are considered. These dual-modality scanners are currently the prior art to obtain func-

tional and morphological information in one single procedure. A perspective on the future of

dual-modality imaging is taken in the last section, giving the motivation for the work at hand.

1



2 CHAPTER 1. IMAGING IN NUCLEAR MEDICINE

1.1 Molecular Imaging

Functional imaging, as opposed to structural imaging, centers on revealing physiological activ-

ities within a certain tissue or organ. In molecular imaging, medical imaging modalities are

employed that use tracers of metabolic processes to uncovertheir spatial distribution within the

body. Tomographic modalities employed in nuclear medicineare emission computed tomog-

raphy (ECT) imaging modalities, particularly Single PhotonEmission Computed Tomography

(SPECT) and Positron Emission Tomography (PET). In principle, their difference are the used

tracers, single-photon emitters in SPECT and positron-emitters in PET.

Tracers are radioactive isotopes having similar biochemical and biological characteristics as

their compounds within the body. These tracers are also called radiopharmaceuticals or radioac-

tive labeled pharmaceuticals and have a short half-life. The short half-lives of the tracers ensure

that the subject and the people handling them receive only a low radiation dose. A too long

half-life furthermore would require a longer acquisition time to get reliable statistics. According

to Burger and von Schulthess [6], radioactive isotopes are excellent physiologic spies to image

human functional processes bound into biomolecules. In an ideal situation the corresponding

non-radioactive elements occur normally in biomatter and thus a perfect spy can be synthesized.

This synthetic spy is moreover not recognized as foreign by the human body. Other properties

are that the images obtained by nuclear medicine contain little signal not coming from the radio-

pharmaceutical and that even minute quantities of radioactive spies can be detected due to the

high sensitivity for detection of radioactivity.

The obtained emission data is interpreted visually and/or analyzed either semiquantitatively

or quantitatively, where the extraction of quantitative information requires an appropriate math-

ematical model of the physiologic process to be quantified. The reason for this is that ECT

measures counts only but cannot deduce in vivo to which molecular species the radioisotope is

bound. PET imaging, in particular, which provides quantitative data relatively easily and at high

enough temporal resolution, has seen extensive and sophisticated quantification. Input sampling

of arterial or arterialized venous blood is standard even insome clinical PET studies and curve fit-

ting using compartment modeling to derive data on perfusion, blood volume, oxygen extraction,

and metabolite and receptor-ligand kinetics is widely used[6].

Besides the functional information, anatomically appropriate information is frequently ob-

tained in bone, lung, kidney, thyroid and heart studies, while in brain studies and studies for tumor

detection the anatomic information may be insufficient [6].Fusion of functional and anatomical

information obtained by structural imaging modalities such as CT and MRI is required.
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1.2 Dual-modality Imaging

Different imaging modalities visualize different aspectsof disease in a non-invasive way. Both

CT and MRI are used primarily for imaging anatomical changes, whereas molecular imaging

techniques of PET and SPECT, as introduced in the last section, capture functional or metabolic

changes. Each of these two types of change delivers important information, however, only the

combination of both, anatomical as well as functional information, may clarify the nature of an

abnormality and help diagnose or stage the underlying disease.

Townsend and Cherry [55] described the prior art dual-modality technologies in 2001. At the

time it was a novel approach to combine PET or SPECT with CT, whereas to date it is almost

ordinary to have a SPECT-CT or PET-CT scanner in a clinical environment. Many of the ad-

vantages of dual-modality imaging systems besides software approaches for image fusion have

been mentioned by Townsend and Cherry. One of the most obviousbenefits of a combined scan-

ner is the more accurate superposition of functional and anatomical data even in regions where

fusion software hardly reveals satisfactory results. Thisenables a reliable localization of radio-

pharmaceutical uptake or guides surgery in areas where vital structures neighbor disease or in

anatomically complex regions. Furthermore, the ability toacquire functional and morphologi-

cal images in a single procedure increases patient throughput, which is a relevant issue in a busy

clinical environment. Another opportunity offered by dual-modality scanners that combine func-

tional and anatomical imaging modalities is the use of the morphological information for sake

of precise attenuation correction (AC) of the emission data.For hybrid systems combining ECT

and CT CT-based correction of the gained emission data is a method of choice.

Although the combination of ECT and CT has already attained widespread use and unless

its advantages mentioned before, it has many limitations. Its major drawback is that the imaging

is performed sequentially rather than simultaneously. This introduces potential misregistration

due to improper patient positioning, respiratory motion and other voluntary patient movement.

Lately, Goetze et al. [17] quantitatively assessed the effect of misregistration in myocardial

perfusion SPECT-CT. The authors determined that misregistration of SPECT and CT occurs

frequently in myocardial perfusion SPECT-CT and that it contributes significantly to changes in

radiotracer distribution in the anterior, septal and inferior segments. The basic statement of these

results can be carried over to general SPECT-CT and PET-CT as well, where misregistration

causes artifacts in the attenuation corrected images. Moreover, CT is good at looking at the

bones, whereas it governs less soft-tissue contrast without the use of contrast agents. A further

important drawback of these hybrid systems is the additional radiation dose.
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1.3 The Future in Dual-modality Imaging

MRI generates high resolution anatomical images offering better soft-tissue contrast and a large

variety of tissue contrasts compared to CT. Additionally, MRIdoes not use any ionizing radiation

and therefore can be used without restrictions in serial studies for pediatric cases and in many

other situations where radiation exposure is a concern [67]. While the combination of PET and

CT has already been realized in clinical scanners, the combination of PET and MRI is more

challenging since conventional PET detectors incorporatephotomultiplier tubes (PMTs) which

are extremely sensitive to magnetic fields. Moreover, it is difficult to develop PET detector

modules that do not cause any serious distortions or artifacts in the MR images. This can only

be achieved if the use of any conducting or ferromagnetic materials is avoided to maintain the

homogeneity of the main magnetic field and to minimize electromagnetic interference (EMI)

between PET and MRI signals [51].

The first prototype PET detectors which are compatible with MRI systems, as the early

single-slice prototype PET system developed by Shao et al. [51] and the more recently by Mack-

ewn et al. [34] developed PET scanner for imaging small animals, coupled lutetium oxyorthosil-

icate (LSO) scintillator elements placed inside the magnetto PMTs and electronics placed out-

side the fringe of the magnetic field by 3 to 5 m long optical fibers. According to the remarks

of Catana et al. [8], major limitations of this approach are the significant loss of scintillation

light via the optical fibers, degrading crystal identification, energy resolution and timing reso-

lution and that a large number of crystals is necessary to achieve both high spatial resolution

and sensitivity. Because of limited space inside conventional MR magnets, it is not practical

to fiber-optically couple large numbers of crystals to external electronics. Hence, a second ma-

jor approach emerged where the PMTs are replaced by avalanche photodiodes (APDs) which are

coupled directly to the back of the scintillators. Fortunately, APDs are relatively immune to mag-

netic fields and have been demonstrated to work inside MR scanners at fields as high as 9.4 T.

This approach solves the many limitations of fiber-optically coupled systems but also has the

largest potential for EMI between the radio frequency and gradient coils and the PET electron-

ics. Therefore, first attempts using APDs instead of PMTs aimed at a combination of both major

approaches by coupling the APDs via short lenghts of opticalfibers to arrays of LSO crystals.

Initial results obtained by Catana et al. [8] with such a multi-slice PET-MR scanner showed no

visible artifacts using standard pulse sequences. Moreover, Judenhofer et al. [23] just recently

developed a multi-slice three-dimensional animal PET scanner where the APDs are coupled di-

rectly to the back of the scintillators and therefore it could be built completely into a 7 T MRI.

Already previously, Schlemmer et al. [50] presented the first human brain images with a similar
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multi-slice PET-MRI system. The authors reported that the performance of neither the PET nor

the MR scanner was degraded by synchronous data acquisitionand that the PET and MRI data

revealed image qualities comparable to stand-alone systems without any significant distortions or

artifacts. Particularly, the integrated PET detector was invisible for the MRI system maintaining

a good signal-to-noise ratio (SNR) and spectral resolution of MR spectroscopy (MRS).

Besides the difficulties to combine PET and MRI, it provides several more potential advan-

tages compared to PET-CT as only the high soft-tissue contrast and elimination of additional

ionizing radiation. Simultaneous imaging of function and morphology becomes possible, thus,

greatly reducing the amount of misregistration if not even eliminating it. The accurate registra-

tion furthermore permits precise anatomically based region of interest definition and may allow

partial volume correction for PET data. In addition, this technology could be used to directly

compare functional MRI (fMRI) studies with PET blood flow studies and to temporally corre-

late MRS and PET information in the study of complex metabolicprocesses and is capable of

assessing flow, diffusion, perfusion and cardiac motion in one single examination [51, 67]. Zaidi

stated in the point/counterpoint discussion if PET-MRI willreplace PET-CT as the molecular

multi-modality imaging platform of choice in [67], that PET-MRI will likely succeed in unifying

the four promising molecular imaging techniques PET, MRI, fMRI and MRS, which be in sharp

contrast to the limited information provided by dual-modality PET-CT.

However, in comparison to CT, MRI produces anatomical images from which it is more

difficult to derive attenuation maps for correction of the emission data. In an only recently

published article [65] again Zaidi stated if MRI-guided attenuation correction is a viable option

for dual-modality PET-MR imaging. In this article he summarized the few studies that have

addressed this issue so far and concluded that the results are still unconvincing and more research

is needed. Nevertheless, the feasibility of some approaches has yet been demonstrated and the

motivation for the work at hand as well was to evaluate the feasibility of another MRI-guided

attenuation correction strategy for PET-MR scanners.
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Chapter 2

Emission Tomography

In transmission tomography a gamma source is placed outsidethe human body and the attenu-

ation of photons traveling through the body is pictured. Contrary, in emission tomography the

subject has been injected with, has ingested or has inhaled aradioactive tracer that radiates pho-

tons. Detectors then collect the endogeneous photons from outside the body. The measured

radiation is directly related to a physiological metabolism of the examined subject. The kind of

physiological function that is imaged is determined by the administered radioactive tracer. An

isotope compound of glucose, for instance, can be used to identify areas of cancerous involve-

ment and to distinguish malignant from benign lesions. It therefore plays an important role in

the diagnosis and management of patients with cancer.

This chapter gives at first a description of the commonly usedECT modalities in nuclear

medicine. Afterwards, the effect of photon attenuation in emission tomography is treated in

detail. Which algorithms are used to reconstruct the emission images is considered towards the

end of this chapter. The attention there is turned on the compensation for photon attenuation.

7



8 CHAPTER 2. EMISSION TOMOGRAPHY

2.1 Single Photon Emission Computed Tomography

Single Photon Emission Computed Tomography is the direct progression of planar scintigraphy.

While planar scintigraphy is comparable with radiography, SPECT can be compared with CT.

A gamma camera invented by Hal O. Anger [2] in 1957 and therefore also known as Anger

camera is used to capture the photons emitted by the tracer.

The gamma camera consists of a mechanical collimator, a scintillation crystal, an array of

PMTs and a processing unit including a discrimination unit to separate scattered from unscattered

photons. The schematic representation of the gamma camera is shown in Figure 2.1. Photons

emitted by the radiopharmaceutical are detected as described in the following. The collimator

ensures that each photon impinging on the detector has a well-defined direction such that the cor-

responding projection line can be determined. This is necessary for tomographic reconstruction

of the emission image. A photon that enters the scintillatorinteracts with the crystal atoms until it

has lost all its energy, whereby the atoms are raised to an excited state. The excited atoms return

to the ground state by emitting visible-light photons that can traverse the scintillation crystal un-

resisted. These light photons reach the light-sensitive surface of the neighboring PMTs causing a

photoelectric effect and so releasing electrons. These aremultiplied by a cascade of stages in the

PMTs and the generated currents are further amplified. The amplified currents are proportional

to the number of light photons that hit the corresponding PMT. Hence, the overall current is pro-

portional to the total number of scintillation photons and therefore proportional to the energy of

the impinged photon. Moreover, the PMTs get an amount of light that depends on their relative

position to the scintillation event, which enables the decoding of the location where the photon

has impinged on the crystal. The discrimination unit takes the overall current proportional to

the photon energy and compares it to the expected current corresponding to the energy of the

photons emitted by the radionuclide used. Scattered photons have lost part of their energy and

thus can be discarded by the discrimination unit. However, many of the processes involved in

detection underly statistical variations and the estimated energy therefore also shows a Gaussian

distribution around the true value, known as the photopeak.The broader the peak, the worse is

the energy resolution of the gamma camera. Scattered photons that are still under the photopeak

cannot be distinguished from primary, unscattered photons. The range of energy that is accepted

by the discrimination unit is called the photopeak window. Each accepted event in the photopeak

window increments the counter of the corresponding pixel inthe image matrix [6, 13].
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nuclide half-life Eγ (keV)
99mTc 6 h 140
123I 13 h 159
201Tl 3.1 d 80 + 167
67Ga 3.2 d 92 + 185 + 296
111In 2.8 d 173 + 247

Table 2.1: Properties of commonly used radionuclides in SPECT

tracer organ diagnostic question
99Tc-Phosphate bone tumor
99Tc-Phosphate,201Th-Chloride heart septal defects, stroke volume
99Tc-Pertechnetate thyroid tumor, hyperfunction
99Tc-Macroalbumine lungs ventilation

Table 2.2: Commonly used tracers in SPECT and their fields of application

Instead of acquiring just a single planar projection of the spatial distribution of radioactivity,

as it is the case in planar scintigraphy, multiple projections are drawn from different angles about

the patient, where several slices are acquired simultaneously. The projections obtained are then

reconstructed in the same manner as it is done in CT. There are basically two solutions to obtain

the required projections. So called multi-detector systems consist of a closed ring or polygon of

detectors into which the body section of interest is placed.To date, these systems are dedicated

to brain studies and not in widespread use. The favored solution is a gantry with one or more

movable heads as illustrated in Figure 2.2 [6]. An importantnot illustrated configuration is the

triple-head SPECT system, where one of the gamma cameras is used to acquire transmission

data from an opposite radionuclide source additionally to the emission data if radionuclide trans-

mission imaging is applied to obtain the attenuation map. A nice property of a dual-head SPECT

system is that it can easily be upgraded to a relatively cheapPET system by just attaching a

coincidence detection circuit, resulting in a combined SPECT-PET system [13].

For the SPECT radionuclides, photon energy is ideally in the range of 100 to 200 keV. Be-

low 100 keV tissue absorption and scatter become significant, whereas above 200 keV there is

low detection efficiency. Typical radionuclides used in SPECT and their properties are listed in

Table 2.1 [15], whereas Table 2.2 lists common tracers and their fields of application [13].
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Figure 2.1: Schematic representation of the gamma camera

(a) single-head (b) dual-head

Figure 2.2: SPECT systems
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2.2 Positron Emission Tomography

Tracers in Positron Emission Tomography are positron emitters. Typical radionuclides used and

their properties are listed in Table 2.3 [40, 49]. On decay a proton turns into a positron, a neutron

and a neutrino [40]:

p → e+ + n + ν .

The range of the emitted positrons lies within few millimeters. Within this range the positrons

are slowed down due to interactions with neighboring atoms and finally each annihilates with an

electron. The result of the annihilation are two photons traveling in opposite direction [40]:

e+ + e− → 2γ .

Due to the law of the conservation of energy and momentum, theenergy of each photon is

511 keV. The annihilation photons are detected by a ring of detectors enclosing the patient body

in a 360◦ circle. Mainly due to statistical components in the detection and processing time, both

single events may have a time delay. Thus, single events thatare detected within a coincidence

time window of usually 10 to 20 ns are considered as simultaneous and belonging to a single

positron annihilation. According to Newiger [40] a typicaltime window for coincidence detec-

tion is about 12 ns long. Each recorded coincidence increases the count of the projection ray

corresponding to the so called line of response (LOR) connecting the opposing detectors which

registered the two single events. Not only true coincidences but also random or scattered co-

incidences are erroneously recorded. Thus, the acquired projection data has to be corrected for

these effects. The positron decay and annihilation as well as the detection of the coincidence is

illustrated in Figure 2.3 [40, 6, 13].

Besides some alternative PET system designs as described in [6], multi-ring PET scanners

are commonly used. These scanners have several adjacent detector rings that are housed in a

gantry and can operate either in 2D or 3D mode. Each of these rings consists of so called block

detectors, each in turn consisting of an array of, for instance, four by eight crystals with four

PMTs. The detector rings acquire projections in many directions simultaneously. A system op-

erating in 2D mode, in principle, images transaxial planes of the investigated part of the body

independently. Therefore, the rings are separated by tungsten septa. An important aspect of PET

scanners is that no further mechanical collimation takes place, since the detection of only coinci-

dence events performs even an electronic collimation. A property of electronic collimation and

simultaneous acquisition of projections is the acquisition of sufficient statistics with less activity.
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nuclide half-life max.Eβ+ averageEβ+ max. range average range

(min) (MeV) (MeV) (mm) (mm)

11C 20.4 0.96 0.385 5.0 0.3
13N 9.9 1.19 0.491 5.4 0.4
15O 2.9 1.72 0.735 8.2 1.5
18F 110.0 0.64 0.242 2.4 0.2

Table 2.3: Properties of commonly used radionuclides in PET

tracer measurement of fields of application
11C-Acetate fatty acid metabolism cardiology
11C-Methionine amino acid metabolism oncology
13N-NH3 perfusion cardiology

H2
15O perfusion cardiology, neurology

18F-FDG glucose metabolism cardiology, neurology, oncology

Table 2.4: Commonly used tracers in PET and their fields of application

In 3D mode the septa are removed to exploit as much information as possible. However, also the

detection of scattered coincidences increases significantly. Figure 2.4 illustrates the difference in

LORs of a multi-ring PET scanner operating in 2D or 3D mode [6].

According to [6] there are two fundamental processes that limit the resolution obtainable

with PET: the range of the positrons between emission and annihilation and the deviation from

exact collinearity of the two emitted annihilation photons. The average range of commonly used

positrons can be taken from Table 2.3 and is dependent on the kinetic energy of the positrons.

Since the positrons are still moving when they meet an electron, the angle between the two

emitted photons is not exactly 180◦ but show an almost Gaussian distribution with a full width

at half maximum of about 0.5◦. A deviation from 180◦ causes the annihilation to be located

on a wrong line. Hence, the fundamental resolution limit is about 3 mm, whereas current PET

scanners achieve a resolution of 4 to 6 mm at the center of the field of view (FOV). Moreover,

the resolution increases with less recorded events since the high frequencies have to be cut off

during reconstruction [13].

Typical clinical applications of PET show up in cardiology,neurology and especially oncol-

ogy, where, for example, tumor growth and metabolism can be pictured quantitatively to guide

patient treatment and to monitor the success of a therapy. Table 2.4 lists tracers commonly used

in PET and their fields of application [40].
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Figure 2.3: Illustration of positron decay and annihilation

(a) 2D mode with septa in (b) 3D mode with septa out

Figure 2.4: LORs of a multi-ring PET scanner in 2D and 3D modes
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2.3 Photon Attenuation

A radiopharmaceutical used for radionuclide imaging gets distributed in the body, emitting pho-

tons at one or more energies. Starting from the point of its generation, a photon travels along

a straight line until it interacts with matter. In the desired case this happens within the detector

outside the body and results in an event that is recorded. However, if the photon interacts with

body matter on its way to the detector, it is absorbed or deflected from its original direction [6].

Both absorption and scattering are the components of the general process of photon attenuation.

2.3.1 Interactions of Radiation with Matter

At the photon energies below 1000 keV encountered in nuclearmedicine the major interactions

in body tissues are photoelectric absorption and Compton scattering. Photoelectric absorption

dominates over scattering for photons of low energy and dense absorbers. The total attenuation

is dominated by the photoelectric effect below photon energies of 30 keV and 50 keV for soft

tissue and bone and is dominated by Compton scattering for photon energies between 200 to

1000 keV [28].

Photoelectric Effect In the photoelectric effect, illustrated in Figure 2.5, theincident photon

transfers all its energy to an orbital electron of the absorber atom. This photoelectron is ejected

from the atom with a kinetic energyEkin equal to the photon energyEγ reduced by the electrons’

binding energyEb:

Ekin = Eγ − Eb . (2.1)

The photoelectron looses its energy by ionization and excitation in the absorber, which enables

the detection of the photon in the detector as described in section 2.1. The photoelectric effect oc-

curs primarily for low-energy photons and decreases sharply with increasing photon energy and

very rapidly with decreasing atomic numberZ of the absorber atom. Roughly, it is proportional

to Z5/E3
γ . Moreover, it occurs primarily with the K-shell electrons,with about 20% contribu-

tion from the L-shell electrons and even less from higher shells. There are sharp increases in

photoelectric effects at energies exactly equal to bindingenergies of the shell electrons [49].
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Compton Scattering In Compton scattering, illustrated in Figure 2.6, the photonstrikes a

loosely bound electron of an absorber atom of body tissue andtransfers a part of its energyEγ to

it. The Compton electron is ejected from the absorber atom andmay cause ionization or excita-

tion as in the photoelectric effect. The photon itself is deflected from its original direction at the

angleθ, continuing with less energyEγ′. It may undergo subsequent interactions in the absorber

or may escape without further interaction. Using the law of the conservation of momentum and

energy, the scattered photon energy is given by [49]:

Eγ′ =
Eγ

1 + (Eγ/mec2)(1 − cos θ)
, (2.2)

whereme is the rest mass of an electron andc is the light speed. Thus, the productmec
2 is equal

to 511 keV, the rest energy of an electron. Moreover, the kinetic energyEkin of the Compton

electron is given by:

Ekin = Eγ − Eγ′ − Eb , (2.3)

whereEb is the binding energy of the Compton electron. Compton scattering is directly propor-

tional to the atomic numberZ and has a slight non-linear inverse dependence on photon energy

between 10 and 1000 keV. At low photon energies, forward and backward scattering is equally

likely, but at higher energies, scattering in forward direction dominates more [49, 28, 6].

2.3.2 Linear and Mass Attenuation Coefficient

The intensity of transmitted photons through an absorber can be expressed mathematically by

the exponential equation [62]:

I = I0 exp

[

−

∫

L

µ(x)dl

]

, (2.4)

whereI0 is the intensity of incident photons anddl is a differential of the thickness of matter

encountered as the beam of photons passes through the absorber along pathL. The functionµ

is the spatial distribution of the linear attenuation coefficients. The attenuation coefficientµ at

a specific spatial locationx represents the probability that a photon will undergo an interaction

while passing through a unit thickness of matter. It is therefore a measure of the fraction of

primary photons that interact with the absorber and is expressed in cm-1 [6, 62].
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The linear attenuation coefficientµ is dependent on the photon energy and proportional to the

density of the absorber. To compare the attenuation of different materials, the linear attenuation

coefficient of a material is divided by its densityρ to form the mass attenuation coefficientµm in

cm2/g, which then depends only on the photon energy [6]:

µm :=
µ

ρ
. (2.5)

From [62] it can be concluded that bone suffers more attenuation than lung tissue and that the

photons appearing in SPECT are more attenuated than the annihilation photons occurring in PET.

In the case considered above, the intensity of transmitted photons excludes scattered photons

that are erroneously recorded as events. This is called the good geometry condition and the

linear attenuation coefficients in this case are referred toas narrow-beam attenuation coefficients.

Otherwise, if scattered photons are included, they are referred to as broad-beam attenuation

coefficients. The build-up factor originating from the broad-beam condition is defined as the ratio

of the total transmitted photons divided by the ideal narrow-beam measurement corresponding

to unscattered photons in the transmitted beam. Thus, the build-up factor on the good geometry

condition is equal to one, but greater than one on the broad-beam condition [70].

The exponential equation for the broad-beam condition is given by:

I = I0B exp

[

−

∫

L

µ(x)dl

]

, (2.6)

whereB is the build-up factor caused by scattered photons. Zaidi etal. [70] summarized the

fundamental relationship of scatter to attenuation. According to them, a photoelectric absorp-

tion contributes only to attenuation, but Compton scatter increases attenuation and also sets up

a potential scatter corruption. Attenuation and scatter have opposite effects on activity quan-

tification in the sense that photon attenuation decreases counts, thus allowing too few photons

to be detected, resulting in underestimation of activity. In contrast, scatter corruption increases

counts, thus allowing too many photons to be detected, resulting in overestimation of activity.

Both uncorrected attenuation and uncorrected scatter corruption cause significant loss of contrast

between neighboring structures and bias in activity quantification.



2.3. PHOTON ATTENUATION 17

Figure 2.5: Photoelectric effect

Figure 2.6: Compton scattering
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2.4 Reconstruction

Once the emission data has been collected, a reconstructionalgorithm is applied to get the to-

mographic images of the spatial distribution of radioactivity. The mathematical foundation of

reconstruction in computerized tomographic imaging is based on the Radon transform [10]:

p(θ, t) =

∫

L(θ,t)

f(x, y)dl , (2.7)

where a two-dimensional parallel geometry is considered. The parameterθ represents the pro-

jection angle,t the transverse position andf the radionuclide source distribution. The projection

line L is given by:

x cos θ + y sin θ = t . (2.8)

Fourier methods on the basis of the Fourier Slice theorem, namely filtered backprojection (FBP)

[24, Chapter 3], and algebraic reconstruction algorithms [24, Chapter 7] have been used for

decades to solve the reconstruction from projections problem.

The above equation (2.7) holds in emission tomography only if the attenuating properties of

the object can be omitted. This is hardly true in the case of human subjects. Not minding the

attenuation of photons leads to serious artifacts in the reconstructed images. These artifacts make

it difficult or even impossible to read the images and to make areliable diagnose. Particularly, if

quantitative analysis of the physiologic processes is desired, compensation for photon attenuation

is mandatory. Bai et al. [3] investigated the effects of attenuation on tumor detection in whole-

body PET imaging and strongly recommended the application of attenuation correction strategies

to avoid missing regions of elevated tracer uptake. Moreover, as another example to note its

importance, professional societies recommended attenuation correction for myocardial perfusion

SPECT in a joint position statement [19]. Figure 2.7 illustrates the reconstruction artifacts if the

emission projections are reconstructed without attenuation correction.

Therefore, the spatial distribution of linear attenuationcoefficients has to be incorporated into

equation (2.7). The amount of attenuated photons in SPECT depends on the tissue pathlength

that the photon encounters as it travels between the point ofemission and the point of detection,

whereas in PET the annihilation photons traverse a total tissue thickness that is equal to the

body thickness intersected by the LOR. Accordingly, the pathL in equations (2.4) and (2.6),

respectively, is the path from the point of emission to the point of detection in SPECT but the

whole LOR in PET. Attention has therefore to be paid to the difference in paths resulting in

slightly different formulas for SPECT and PET [62].
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The general equation describing measured projections in terms of the radionuclide source

distribution inside an attenuating medium is given in the case of SPECT by:

pSPECT(θ, t) =

∫

L(θ,t)

f(x, y) exp

[

−

∫ d(x,y)

0

µ(x′, y′)dl′

]

dl , (2.9)

whered is the distance from the emission point in the object to the detector along the projec-

tion line andµ is the spatial distribution of narrow-beam attenuation coefficients. Whereas the

attenuated Radon transform in PET is given by:

pPET(θ, t) =

∫

L(θ,t)

f(x, y)dl × exp

[

−

∫

L(θ,t)

µ(x, y)dl

]

. (2.10)

Nevertheless, as the amount of attenuation is independent of the point of emission along the

LOR, the captured sinograms in PET can exactly be corrected for attenuation by simple pre-

multiplication with attenuation correction factors (ACFs)obtained by transmission imaging as

described in section 3.2.1 or calculated from a patient-specific attenuation map, provided such

a µ-map is available. The ACFs are defined as the exponential of the line integrals of linear

attenuation coefficients along each LOR [70]:

ACF (θ, t) := exp

[
∫

L(θ,t)

µ(x, y)dl

]

. (2.11)

The corrected projections are obtained as noted above by simple pre-multiplication [70]:

pPET,AC(θ, t) = ACF (θ, t) × pPET(θ, t) =

∫

L(θ,t)

f(x, y)dl . (2.12)

However, attenuation correction is more complicated and can only be an approximation in

SPECT, because the attenuation factors cannot be separated from the unattenuated Radon trans-

form. Apart from that it should be noted that the magnitude ofthe ACFs required in PET is far

greater than in SPECT [62]. In addition, correction for events generated by scattered photons

and random coincidences in PET have been neglected so far. Not applying any scatter correc-

tion in conjunction with attenuation correction results inoverestimation while compensating for

attenuation alone. Thus, the build-up factor caused by scatter has to be estimated and compen-

sated for. This is done in PET prior to the attenuation correction as described above. In [68],

Zaidi and Montandon only recently gave an exhaustive overview of scatter correction techniques

commonly applied in PET.
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(a) AC PET image (b) Non-AC PET image

Figure 2.7: Reconstructed PET image with and without compensation for photon attenuation

King et al. [26] reported increased artifacts when the spatial resolution in the attenuation map

was either significantly better or worse than the resolutionof the emission data being corrected.

Thus, if the attenuation map has higher spatial resolution,additional smoothing can be used to

reduce noise and to match the resolution to that of the emission image.

Although FBP has been the most common technique for image reconstruction in CT and also

ECT for many years, it can in general only be an approximation to the inverse attenuated Radon

transform with non-uniform attenuation [62]. This and the advantages of iterative reconstruc-

tion algorithms mentioned below, which also enable compensation for scatter and attenuation in

SPECT, led to increasingly use of iterative algorithms, particularly the maximum likelihood ex-

pectation maximization (ML-EM) algorithms first introduced by Rockmore and Macovski [48].

A practical implementation of the EM method was introduced in PET by Shepp and Vardi [52].

Kontaxakis and Strauss [30] published a conspicuous surveyof applied maximum likelihood al-

gorithms. The authors list many of the important modifications that had to be made to overcome

the disadvantages of conventional EM which allowed this reconstruction technique to become

more and more popular. Although, the EM algorithm yields just an approximation to the exact

solution, physical and statistical factors can be includedin the transition matrix [30, Eq. 3] such

that better results can be achieved as with FBP, particularlyin SPECT. Some of these factors are

scatter and attenuation correction and the Poisson nature of the emission process for both SPECT

and PET and random coincidence correction in PET only. The ordered subsets expectation max-

imization (OS-EM) algorithm invented by Hudson and Larkin [22] creates a new image estimate

at a fraction of the time required by the conventional EM. It has given ML-EM algorithms their

break in clinical practice.



Chapter 3

Attenuation Correction Methods

In section 2.3, the physical phenomena of photon scatteringand attenuation in emission tomo-

graphic imaging were illustrated. Photon attenuation is believed to be one of the most important

causes for image degradation resulting in images in which brightness or counts are not neces-

sarily linear with tracer uptake, thus complicating visualinterpretation and quantitative analysis.

Reliable correction methods for quantitative emission tomography require accurate delineation

of the body contour and often necessitate knowledge of internal anatomic structure especially in

inhomogeneous body regions such as the chest [62]. Therefore, these methods try to determine

the attenuation map representing the spatial distributionof linear attenuation coefficients.

Zaidi and Hasegawa [62] classified existing attenuation correction methods into two broad

classes: transmissionless and transmission-based attenuation correction techniques. Since that,

some research groups have been working on new transmissionless approaches. Therefore, a more

subtle classification was motivated which led to the underlying structure of this section, to some

extent further driven by the more recently by Zaidi et al. [70] published review of strategies for

attenuation compensation in neurological PET studies.

Calculated methods which try to determine a uniform attenuation map from the emission

data alone are considered at first. Then the to date most commonly used measured methods

that require an additional transmission scan, including the CT scan acquired on a dual-modality

imaging system, are highlighted, followed by more recentlyevaluated atlas-based approaches.

Methods that make use of a co-registered MR image of the patient to determine the patient-

specific attenuation map are considered at last. Few studieshave addressed this approach for

attenuation correction so far. Particularly against the background of simultaneous PET-MR imag-

ing, MRI-guided approaches will become highly attractive.

21
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3.1 Calculated Methods

Calculated attenuation correction approaches determine the body contour from the emission data

alone, which is in general a difficult task. Then, a uniform distribution of linear attenuation co-

efficients is assigned to the inside of the body, where the magnitude of the attenuation has either

to be known, be determined empirically or is based on theoretic assumptions. Hence, calculated

attenuation correction is only appropriate for brain studies but more adequate methods must be

performed where the attenuation coefficient distribution is not known a priori such as the lungs,

where the density varies by as much as 30% [27], and also for areas of inhomogeneous attenu-

ation such as the chest. Therefore, the clinical application of calculated attenuation correction

methods was limited to brain studies.

The body contour may either be delineated manually as in the case of the uniform fit-ellipse

method [64] or by application of an automatic edge-detection algorithm. Besides the assumption

of uniform attenuation, the main limitation of calculated methods is the fact that values for the

linear attenuation coefficients of tissues have to be assumed.

Other ambitious and more sophisticated methods, includingthe application of statistical mod-

els for simultaneous estimation of emission and transmission distributions and the application of

consistency conditions, which also try to determine the attenuation map directly from the emis-

sion data, were summarized by Zaidi et al. [70]. However, theauthors reported missing evidence

in the literature substantiating the applicability of these techniques in a clinical environment.

3.1.1 Uniform Fit-ellipse Method

The simplest method to derive an attenuation map is to manually draw a slice-dependent ellipse

on a preliminary reconstructed emission image to approximate the outline of the head. Then a

uniform attenuation is assigned within this elliptical contour. Obvious drawbacks of this method

are the operator dependence of the results, the bias due to the poor approximation of the body

outline and the assumption of uniform attenuation. An irregular contour can also be drawn by an

experienced technologist but requires remarkably more time. Nevertheless, the manual fit-ellipse

method is still applied in clinical routine for simplicity reasons, especially when transmission

imaging is impractical or even not possible. It is further used by other approaches like the trans-

mission atlas-guided method described in section 3.3.2 to correct a preliminary reconstruction of

the emission data.



3.1. CALCULATED METHODS 23

3.1.2 Automated Contour Detection Methods

To reduce the burden on the operator and to get a better approximation of the outline, automatic

edge-detection algorithms are applied [70]. Moreover, theoperator dependence of the results is

removed by using automated techniques. To account for the considerable higher attenuation of

the skull, a higher attenuation coefficient can be assigned within a certain thickness of the outline

or by estimating the skull boundary from an emission image reconstructed without attenuation

correction. A more sophisticated fully automated technique that works out a three-component

model of the attenuation map was proposed by Weinzapfel and Hutchins [57]. This method gen-

erates an estimated skull image by FBP of the reciprocal of theemission sinogram. The thickness

and radius of the skull are estimated from profiles extractedfrom this image. The resulting values

are then used to generate a model of the brain, skull and scalp. Appropriately scaled linear atten-

uation coefficients determined empirically are then assigned to each brain structure to generate

an attenuation map of the head [70].
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3.2 Transmission Methods

Methods that make use of an additional transmission scan, also referred to as measured attenua-

tion correction, are most widely used to date in clinical practice. Clearly, these methods supply

more accurate attenuation maps, whereas the patient is subject to additional radiation dose. The

transmission scan may either be acquired using an external radionuclide source similar to the

radionuclides used in ECT or using a X-ray source as in CT. The latter is especially the case

for combined ECT-CT scanners where no additional image fusionhas to be performed to co-

register the CT image with the emission image. Due to the fact that radionuclide transmission

methods rely on mono-energetic photons just as emission imaging, the attenuation maps gener-

ated by these are considered as gold standard when comparingdifferent methods for attenuation

correction. Whereas radionuclide transmission imaging is still a method widely applied in clin-

ical practice to determine the patient-specific attenuation map, the utilization of CT images has

evolved while dual-modality imaging systems became more attention.

3.2.1 Radionuclide Transmission Imaging

In radionuclide transmission imaging in principle an external single-photon or positron emitting

source of radiation is placed on one side of the patient and a detector on the other side measures

the transmitted photons before (pre-injection), during (post-injection, simultaneously) or after

(post-injection, sequentially) emission scanning. The measurements are then compared to the

counts of photons observed during a blank scan that is taken,for instance, once each morning

when no patient is present in the FOV. Normally, the blank scan is acquired over a long duration

and therefore can be assumed as almost free of noise. The ratio of the intensity of the transmis-

sion scan to the intensity of the blank scan yields the transmitted fraction as it can be derived

from equation (2.4). Logarithmic transformation finally yields:

− ln

(

I(θ, t)

I0(θ, t)

)

=

∫

L(θ,t)

µ(x, y)dl, (3.1)

whereI0 andI are in particular the sinograms of the blank and transmission scan parametrized

over the projection angleθ and the transverse positiont and the corresponding projection lines

are denoted byL.
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Hence, the attenuation map can be reconstructed from the natural logarithm of the blank-to-

transmitted sinogram ratios. Iterative reconstruction ispreferred, since the Poisson nature of the

radioactive decay and random coincidences can be included to get unbiased images with lower

variances than by FBP, especially in PET [41, 16]. However, equation (3.1) already yields the

ACFs needed in PET if a positron emitting transmission sourceis used, since the energies of

transmission and emission photons are then the same. In thiscase, no reconstruction of the atten-

uation map has to take place. In all other cases, the reconstructed linear attenuation coefficients

have to be transformed to the photon energy of the emission isotope.

King et al. [26] reported that statistical noise in reconstructed emission images is dominated

by the noise in the emission profiles and not the noise in transmission images. The reason for

it is that the noise in the attenuation map is averaged out in the process of forward projection to

calculate the ACFs. Nevertheless, as the number of counts in transmission profiles decreases, a

point is reached where not only does the noise in the attenuation map increase, but the measured

attenuation coefficients start to exhibit a bias resulting in an overestimate of the amount of at-

tenuation in the slices on reconstruction. Thus, low transmission counts, cross-talk contributions

from the emission isotope, scatter and truncation of the transmission data are the major causes for

artifacts in the transmission images, which in turn cause artifacts in the reconstructed emission

images as evaluated in SPECT by Celler et al. [9] and in PET by Meikle et al. [35]. Mechani-

cal collimation is required when single-photon emitting transmission sources are used to reduce

scatter in the transmission data to get a good estimate of narrow-beam attenuation coefficients.

Transmission imaging is basically performed either pre- orpost-injection of the radiophar-

maceutical used for emission imaging, where in both cases many approaches have been pro-

posed to reduce the artifacts in the transmission images caused by previously mentioned factors.

Some of these approaches are described in more detail in whatfollows. Several transmission

imaging geometries adopted in SPECT were summarized by Zaidiand Hasegawa [62]. More-

over, an overview of different transmission source and collimator configurations used in simul-

taneous transmission-emission SPECT imaging for single-head and multiple-head systems was

given by King et al. [26]. The radionuclide used as transmission source is mainly57Co, 99mTc,
133Ba, 139Ce, 153Gd, 201Tl or 241Am depending on the radionuclide used for emission imaging.

PET scanners of the second generation typically used one or more continuously rotating rod

sources, containing a long-lived isotope such as68Ge which decays to the positron emitter68Ga.

The transmission scans were commonly be acquired in 2D mode with septa in, whereas most re-

cently single-photon emitting sources are adopted also in PET, allowing for transmission imaging

in 3D mode with septa out. Particularly modern PET scanners operate in 3D mode only.
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Important drawbacks of radionuclide transmission imagingare the extra complexity of the

system design and the data acquisition and processing protocols and the extra cost resulting from

the periodic requirement to replace expensive sources [66]. A major limitation of the use of

positron-emitting transmission sources in PET, especially in 3D mode, is the high photon flux in

the detectors closest to the source, which usually leads to longer scan times because of detector

dead time. However, this problem can be relieved by electronic windowing the transmission data

so that only events collinear with the known location of the rod are accepted [62].

Pre-injection Radionuclide Transmission Imaging To avoid the contamination of the trans-

mission data, the transmission scan is performed before administration of the radiopharmaceu-

tical. Especially in PET, where a positron emitting source is used for transmission imaging, the

separation of both scans, if acquired post-injection, is quite difficult since both transmission and

emission photons have the same energies. However, sequential transmission-emission imaging

increases imaging time and suffers from image registrationproblems caused by patient misalign-

ment or motion. The increased acquisition time is especially a handicap in whole-body imaging.

To reduce the acquisition time, short transmission scans ofabout 2 to 3 min are performed

leading to limited transmission counts and consequently higher noise in the transmission images.

This is because transmission data undergoes a non-linear transformation before reconstruction

as shown in equation (3.1), which introduces singularitiesand systematic bias. Assuming that

the transmission data is corrupted by additive noisen, arising from Compton scatter or random

coincidences in PET, the line integrals are given by [41]:

∫

L(θ,t)

µ(x, y)dl = − ln

(

I(θ, t) − n(θ, t)

I0(θ, t)

)

. (3.2)

Since the logarithm is only defined for positive numbers, theline integrals do not exist for zero

or negative values of the numerator on the right side of equation (3.2). Moreover, the logarithm

skews the distribution of the line integrals for low-count data such that the estimated integrals are

biased. Therefore, the integrals are undefined for some projections and biased for others [41].

One way to reduce noise in the transmission data is the segmented attenuation correction

(SAC) approach proposed by Xu et al. [58]. The reconstructed transmission image pixels are

segmented into populations of uniform attenuation. The resulting distribution of linear attenua-

tion coefficients is then forward projected to get new ACFs. This reduces noise in ACFs while

still accounting for specific areas of differing attenuation. The majority of segmentation methods
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used are either histogram-based thresholding techniques or fuzzy-clustering-based segmentation

techniques. Whereas the performance of the first techniques depends strongly on the choice of

thresholds, techniques of the last category demonstrated excellent performance and produced

good results as an automated, unsupervised tool for segmenting noisy images in a robust manner

[62, 70]. A method based on the fuzzy C-means (FCM) algorithm, for instance, was presented

by Zaidi et al. [61]. Meikle et al. [35] investigated the influence of count-limited transmission

data on the noise and quantitative accuracy of reconstructed images in PET and concluded that

accurate attenuation correction can still be performed if SAC methods are applied.

Other approaches to reduce noise in transmission images include non-linear Gaussian fil-

tering as evaluated by Kitamura et al. [29], anisotropic diffusion filtering as investigated by

Demirkaya [11] and iterative reconstruction algorithms asthe ML-EM algorithms [41, 16] and

the median root prior iterative reconstruction method proposed by Alenius et al. [1]. An ad-

vantage of the iterative reconstruction methods is that they are object independent and robust,

because no smoothing or segmentation is used. On the other hand, calculation time is longer

especially in the case of whole-body studies.

As mentioned before, coincidence transmission imaging with positron emitting rod sources

in PET suffers from poor SNR due to low counts resulting from losses caused by dead time of

mainly the detectors on the near side. A first prototype single photon transmission measurement

method was implemented and evaluated by de Kemp and Nahmias [12]. This method removed

the coincidence requirement and adopted the singles eventsof annihilation photons to get the

transmission image, whereby SNR could be dramatically increased. The feasibility of using

right single-photon emitting transmission sources of energy other than the one of the annihilation

photons in PET was investigated almost at the same time by Karp et al. [25] and Yu and Nahmias

[60]. The authors of both suggested to use137Cs with a photon energy of 662 keV and a half-life

of 30.2 y as transmission source, which has low costs compared to the commonly used68Ge rod

sources and needs no replacement due to its long half-life compared to68Ge/68Ga with a half-life

of about 275 d. Moreover, it has the potential to be used in post-injection transmission imaging

with energy discrimination to separate the transmission from emission data. One significant

advantage of single-photon transmission imaging in PET is that a stronger source can be used

without saturating the system. As a result, a very high photon flux is recorded, which leads

to high-quality scans compared to coincidence measurements and a remarkably reduction of

acquisition time. However, post-processing of the data to transform the measurements to the

energy of the annihilation photons and, even with a narrow energy window, additional scatter

compensation are required.
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Post-injection Radionuclide Transmission Imaging To reduce the overall acquisition time,

the transmission scan is performed after administration ofthe radiopharmaceutical such that even

simultaneous transmission-emission imaging is possible.This has proven to be very practical

especially in whole-body oncology studies in which multiple bed positions are needed. However,

cross-talk between transmission and emission measurements has to be obstructed.

Properties a radionuclide for simultaneous transmission-emission imaging in SPECT should

have were given by King et al. [26]. The ideal radionuclide would emit mono-energetic photons

of energy lower than those of the emission source to avoid cross-contamination. On the other

hand, it would emit photons of energy close enough to reduce the magnitude of the correction

required to convert the attenuation map measured at the transmission photons’ energy to that of

the emission photons. Furthermore, it would have a long half-life so that the transmission source

will require replacement infrequently and last, it would not be expensive to manufacture. Given

these requirements,153Gd, for example, is a good choice to use as transmission source for in

SPECT commonly used pharmaceuticals labeled with99mTc [26].

Amongst all possible configurations of transmission imaging geometries in SPECT, the scan-

ning line source with parallel-hole collimation and electronic windowing to store only the events

detected in a narrow region opposed to the line source and a stationary line source with conver-

gent fan beam collimation have attained widespread use. Whereas the advantages of the conver-

gent collimation are that no mechanical motion is required and that it provides a better spatial

resolution sensitivity combination for small structures such as the heart, the disadvantages are

that the line source has to be fixed at the focal point of the collimator and the increased trunca-

tion of the FOV. However, both methods measure near narrow-beam attenuation coefficients and

moreover reduce greatly the influence of cross-contamination.

Meikle et al. [36] proposed a methodology for attenuation correction in whole-body PET

using simultaneous emission and transmission measurements (SET). The SET method employs

sinogram windowing of low activity68Ge/68Ga rod sources, an SAC approach and ML-EM re-

construction using the OS-EM algorithm. The sinogram windowing technique continuously en-

codes the angular displacement of one or more rod sources rotating about the center of the FOV,

enabling the determination of sinogram elements representing collinear detector pairs. Coinci-

dences recorded within a narrow window centered on each rod are stored in a seperate sinogram

of primarily transmission events from those primarily emission events recorded outside the win-

dow. However, some coincidences spill over into the other window at a time. Fortunately, the

spillover fraction is constant and depends only on the widthof the sinogram window, but not

on the emission source distribution and geometry. The SAC approach used by Meikle et al. ap-
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proximates the whole-body histogram of the ACFs by Gaussian functions about the lung and

soft tissue peaks. Then, cumulative probability density functions are calculated for each peak by

integrating under the fitted curve, which are then used to calculate for each pixel the probabilities

that it belongs to lung or soft tissue. New attenuation coefficients are calculated as the by the

probabilities weighted sum of known attenuation coefficients for lung and soft tissue.

Since, as mentioned before, single-photon transmission imaging has been shown to be feasi-

ble also in PET, simultaneous acquisition was offered by transmission sources that emit photons

of energy different from that of the annihilation photons. Aclinical evaluation of single-photon

attenuation correction using137Cs for 3D whole-body PET was first accomplished by Watson

et al. [56]. The authors concluded, that, at least with the protocol they used, high emission

background is not a significant problem in post-injection transmission imaging and that such

attenuation corrected emission images are acceptable for clinical use in most cases.

3.2.2 X-ray Transmission Imaging

X-ray-based transmission imaging is conceptually identical to single-photon-based or positron-

based transmission imaging as described in the previous section on radionuclide transmission

imaging. Since in CT photon attenuation governs image contrast, pixel values contained in CT

images are related to the attenuation coefficient at that point. Hence, it is not surprising that

CT can generate patient-specific attenuation maps as well. The CT image may either be acquired

separately and then co-registered with the emission image or better and more commonly acquired

sequentially on a dual-modality scanner, thus already co-registered with the emission data.

An advantage of CT-based attenuation correction are the highresolution transmission images

with much lower statistical noise than in standard transmission imaging. Nevertheless, the high-

resolution CT images are usually down-sampled and Gaussian filtered to match the resolution

of the emission data. Further advantages are the shorter times required for collecting the trans-

mission data, which improves patient comfort and throughput, and that it is no longer necessary

to include radionuclide transmission sources, thus eliminating both the cost of including these

components and the periodic replacement of decayed sources[27].
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However, opposed to the mono-energetic photons emitted by the radionuclides, the X-ray

source in CT emits photons which cover a relatively broad energy spectrum from 20 to 140 keV.

Moreover, the attenuation at these energies is a combination of both photoelectric effect and

Compton scattering, whereas at the emission photons’ energyin ECT the contribution of photo-

electric effect is essentially negligable [4]. Hence, the CTimages have to be energy-translated

to an accurate attenuation map at the emission radionuclideenergy, where the measured attenua-

tion coefficients in CT correspond to the attenuation at the effective CT energy. The effective CT

energy is defined as that photon energy at which a given material will exhibit the same attenua-

tion coefficient as it is measured by CT. However, for a propagating X-ray beam, the low energy

photons are preferentially absorbed, so that the remainingbeam becomes proportionately richer

in high energy photons. This phenomenon is called beam hardening [24]. Consequently, the

actual effective energy may vary spatially. Pixel values inreconstructed CT images are scaled as

Hounsfield units (HU), named after Godfrey Hounsfield [24]:

H := 1000

(

µCT

µCT
water

− 1

)

, (3.3)

whereH is the CT number in HU,µCT is the reconstructed linear attenuation coefficient and

µCT
water is the estimated linear attenuation coefficient of water at the effective CT energy.

In this scale, air has the value -1000, water has the value zero, and tissues denser than water

have values greater than zero. CT numbers in the range of -1000to zero primarily represent

regions that contain mixtures of lung and soft tissue, whereas regions having CT numbers greater

than zero are those that contain mixtures of soft tissue and bone. Compact bone typically has

values in the range from 1000 to 2000, whereas adipose tissuehas values near -100 [28].

Unfortunately, there is no unique transformation from CT energies to the emission photon

energy when the object contains a complex mixture of material components such as CT contrast

agents or metallic objects. Errors can also arise from respiratory motion, truncation of the FOV

in CT, and beam-hardening or scattered radiation if the patient’s arms are in the FOV of the

CT scan [28]. A summary of pitfalls of CT-based attenuation correction in PET and potential

solutions was just recently published by Zaidi et al. [69].

Basically five methods have been proposed to obtain attenuation coefficients at the emission

photon energy from CT images: segmentation, uniform scaling, bilinear scaling, hybrid segmen-

tation/scaling and dual-energy decomposition.
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Segmentation This method forms the attenuation map by segmentation of thereconstructed

CT image into different regions such as soft tissue, bone and lung and then substitution of the

CT numbers in each region with the appropriate attenuation coefficients. A significant problem

is that any errors in segmentation can lead to artifacts in the reconstruction of the attenuation

corrected data. Furthermore, certain tissue regions will have densities that are not accurately

represented by a discrete set of segmented values such as, for example, the lungs, where the

density can easily vary by as much as 30%. Such segmentation errors will affect all LORs passing

through the misclassified region which can lead to the generation of artifacts when applied to the

emission data [4]. However, Kinahan et al. [27] reported that the segmentation method produced

good results and that an alternative segmentation method has been proposed by Xu et al. [59]

which has proven to be robust even in areas of gradually changing tissue density. This method

combines tissue classification and measured values, however, so it cannot be used directly.

Uniform Scaling The simplest method is to scale the measured attenuation coefficients by a

global scaling factor using the fact, that, for most materials, the ratio of the attenuation coefficient

at any two photon energies is essentially a constant. The ratio of attenuation for water at the

emission photon energy and the effective CT energy yields thescaling factor. Before, the CT

numbers must be translated back to linear attenuation coefficients according to equation (3.3).

All in all, the energy-translated attenuation coefficient using uniform scaling is given by [33]:

µ = µCT
water

H + 1000

1000
×

µwater

µCT
water

= µwater
H + 1000

1000
, (3.4)

whereµwater is the theoretic attenuation coefficient of water at the emission photon energy.

This linear translation method provides a good approximation for scaling between photon

energies where Compton interactions dominate the attenuation coefficient, but is not as accurate

when scaling from lower photon energies, commonly found in X-ray spectra, where photoelectric

interactions significantly contribute to the attenuation coefficient. The error is particularly large

for higherZ materials such as bone, which contains a relatively large percentage of calcium,

and so has a significantly higher photoelectric fraction than water in the range of CT energies.

Moreover, the error is even larger in PET than in SPECT since the energy of the annihilation

photons in PET is 511 keV, whereas in SPECT the emission photonenergy is typically in the

range of 100 to 200 keV. Thus, the resulting attenuation mapsaccurately estimate the attenuation

coefficients for both muscle and lung tissues, but not for bone tissues [33, 4].
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Bilinear Scaling Instead of just applying a linear translation, Blankespoor et al. [5] derived

a piecewise linear function for SPECT at 140 keV. Therefore, aphantom study with calibration

materials, particularly air, water and bone-equivalent solutions, has been performed. Then a

piecewise linear calibration curve was obtained from this study, which was more precisely a bi-

linear function with a change in slope at the CT number of water. This method can be considered

as combining an air/water mixture model for -1000< H ≤ 0 and a water/bone mixture model

for H > 0 [28].

Burger et al. [7] evaluated a transformation of CT into PET attenuation coefficients that uses

the bilinear function:

µ =











µwater
H+1000

1000
, H ≤ 0

µwater + H
µCT

water(µbone−µwater)

1000(µCT
bone

−µCT
water)

, H > 0

, (3.5)

where the linear attenuation coefficients were estimated atan effective energy of the X-ray spec-

trum of 80 keV and the energy of the PET annihilation photons of 511 keV. Particulary, the linear

narrow-beam attenuation coefficients used for the transformation of CT into PET attenuation co-

efficients were:

µwater = 0.096 cm−1

µbone = 0.172 cm−1

µCT
water = 0.184 cm−1

µCT
bone = 0.428 cm−1 .

(3.6)

However, the authors reported that using forµwater the theoretic narrow-beam value of

0.096 cm-1 for the transformation resulted in an obvious discrepancy in the range of 0 to 200 HU.

Therefore, the transformation was modified to be based on theexperimentally determined value

of 0.093 cm-1 that was measured with a phantom.

The same bilinear function was mentioned in an only recentlypublished article of Patton

and Turkington [42] for SPECT. Although the formulas printedin the article are incorrect, it is

clear, however, that the authors indeed used the bilinear function given by equation (3.5) with

the theoretic linear attenuation coefficients at the PET annihilation photon energy appropriately

substituted with the linear attenuation coefficients at theSPECT emission photon energy.
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Hybrid Segmentation/Scaling Another straightforward solution that combines the segmenta-

tion and uniform scaling approaches to overcome the difference in ratios of attenuation coeffi-

cients at any two energies for bone and non-bone tissues is tojust segment the bone component

of the CT image and to scale it differently. This hybrid methodwas proposed by Beyer et al. [4]

for PET and later evaluated by the same authors in [27] where the segmentation is carried out by

simple thresholding. The hybrid method is unlike the bilinear method not piecewise continuous,

since the change in scaling factors leads to a discontinuityat the threshold value. Neverthe-

less, both the bilinear and hybrid scaling methods work wellfor clinical procedures where only

biological materials are being imaged [28].

Dual-energy Decomposition In dual-energy decomposition, the CT image is acquired at two

different effective photon energies and these data is then used to extract the individual photoelec-

tric and Compton contributions to the attenuation coefficient. The different contributions can then

be scaled separately in energy and combined to form a mono-energetic attenuation map at any

emission photon energy [4]. The dual-energy decompositioncan theoretically produce an atten-

uation map which accurately estimates the attenuation coefficients of all tissues, including bone,

and is free from beam hardening artifacts. However, whetherusing an energy-discriminating

detector or a conventional CT scanner for data collection, dual energy measurements are, in gen-

eral, more difficult and time-consuming to obtain. Furthermore, the X-ray beams must be highly

filtered so that there is minimal energy overlap of the high and low energy beams. Moreover,

dual-energy CT applies more radiation dose to the patient [33]. To overcome the potential time

penalties and to reduce both costs and patient dose, Guy et al.[18] designed an acquisition pro-

tocol where the beam energy is switched between alternate slices, producing two interleaved

attenuation maps and allowing two complete attenuation maps at different effective CT ener-

gies to be obtained from one CT scan. The authors referred to their method as Dual Energy

Transmission Estimation CT (DETECT).
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3.3 Atlas Methods

Atlas-based methods try to derive the patient-specific attenuation map from an inferred atlas of

attenuation coefficients scaled to the appropriate photon energy. The main idea behind these

approaches is to obtain the attenuation map by anatomic standardization, which warps the atlas

image such that the result can be considered as being a measurement of the spatial distribution

of linear attenuation coefficients of the examined patient.

Montandon and Zaidi [38] emphasized the conceptual difference between anatomic standard-

ization, also called spatial normalization, and co-registration. Basically, co-registration aims to

match images of a single subject, usually of a different tracer or modality, through rigid or non-

rigid transformation. Contrary, the purpose of anatomic standardization is to transform images

of individual subjects into a standard, for instance a standard brain. Another important difference

is that a true solution exists for registration but not for anatomic standardization. Standardization

therefore has to be performed with caution. Nevertheless, co-registration and spatial normaliza-

tion are the same from a mathematical point of view and thus seldomly explicitly distinguished.

A rather important conceptual limitation of the approachespresented here is that existing

patient-specific anomalies cannot be modeled in an atlas obtained from a single or even an aver-

age representation of the population [38].

3.3.1 Inferring-attenuation Distributions Method

The method of inferring-attenuation distributions (IAD) was developed by Stodilka et al. [53] to

correct brain SPECT images for photon scatter and attenuation. The motivation of the method

was that neurologically impaired patients are unable to keep their head motionless for the ex-

tended duration of sequential emission and transmission scans. Thus, an alternative method that

does not require an additional transmission scan had to be invented.

IAD is based on the assumption that a transformation mappinganalogous features from two

SPECT scans of different subjects into the same spatial coordinates would also register the two

corresponding transmission scans [53]. The head atlas usedwas derived from the Zubal head

phantom, a digitized high-resolution head phantom of a single subject. This phantom was seg-

mented to produce a tracer-specific SPECT atlas that consistsof voxels containing only the brain

component, simulating a SPECT scan of the phantom. Furthermore, an anatomic atlas was

generated assigning appropriate attenuation coefficientsto the voxels of this atlas, simulating a

transmission scan of the phantom. Both SPECT and anatomic atlases build the functional and

anatomic component of the head atlas. The functional component of the head atlas is deformably
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registered to a preliminary reconstruction of the patient SPECT scan and the spatial transforma-

tion is recorded. Then, the patient’s anatomy is inferred bythe anatomic component of the head

atlas. This technique was later also extended and implemented for brain PET imaging as reported

by Zaidi et al. [70].

One drawback of the method is that the applied transformation is restricted to seven pa-

rameters for rotation, translation and global scaling. Better results have been achieved using a

non-linear warping algorithm instead [64]. Further does the registration rely on the assumption

that the spatial distribution of radioactivity is representative of the underlying anatomy [53]. A

limitation of the Zubal head phantom is that the sinus appears to be larger than usual [53, 64] and

new phantom models based on average patient populations maynot help to solve this problem

owing to the large variability in size and shape of the frontal sinus among patients as noted in

[64]. However, Stodilka et al. evaluated that SPECT reconstructions guided by IAD are suf-

ficiently accurate to identify regional cerebral blood flow deficits of 10%, which are typical in

moderate and advanced dementia.

3.3.2 Transmission Atlas-guided Method

An extension to the previously described IAD approach was proposed recently by Montandon

and Zaidi [38]. One of the improvements to yield more robustness was to construct the transmis-

sion and tracer-specific emission atlases based on average patient populations rather than a single

subject. Thus, also eliminating the reliance on the hypothetical tracer distribution. The second

improvement is the use of a non-linear warping algorithm instead of just a simple global rescaling

procedure as also already suggested in [64]. In contrary to the non-corrected preliminary recon-

struction of the emission image, a model-based scatter correction and uniform fit-ellipse based

calculated attenuation compensation were performed before the preliminary reconstruction step

to improve registration accuracy [53, 38], whereupon the algorithm performance strongly de-

pends as the registration is the crucial step which is in common with all atlas-based methods.

Montandon and Zaidi also assessed the quantitative accuracy of the method for 3D brain PET

in [39] using automated volume of interest-based analysis.They reported a very good correlation

between the atlas-guided and measured transmission-guided attenuation correction techniques.

Nevertheless, relevant issues include the effect of abnormal anatomy and/or uptake in patients as

well as the relevance of building tracer-specific templatesto allow application of the proposed

algorithm for children and other tracers. The authors envisaged the use of cost-function masking

to exclude abnormal anatomy or uptake during the normalization procedure.
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3.4 Magnetic Resonance Imaging Methods

The goal of MRI-guided attenuation correction methods is to derive the attenuation map from

an MR image of the patient whose emission data is to be corrected. Therefore, the MR image

has to be aligned in any way to a preliminary reconstructed emission image as it is also the

case for atlas-based methods. However, a already co-registered MR image will be available

once a combined PET-MR scanner is on the market. By then, methods within this category

of attenuation correction strategies have to deal with the problem of separately acquired MR

images. But the actual difficulty is to find a mapping between the non-standardized, by means of

magnetic field inhomogeneities distorted intensity valuesand the appropriate energy-dependent

linear attenuation coefficients. Thus, few publications addressed this type of approach so far and

none of them yet produces unconditionally satisfying results, especially in whole-body ECT. The

latest methods adapt atlas-based approaches and could alsobe classified as atlas-based methods,

however, an MRI acquisition is employed to guide the determination of the attenuation map,

whereas plain atlas-based methods do not require an additional acquisition besides ECT.

3.4.1 Segmented Magnetic Resonance Imaging Method

Zaidi et al. [63] developed an approach to derive the attenuation map from a segmentation

of a co-registered MR image. The authors aimed in general to investigate the feasibility of

segmented MRI-guided scatter and attenuation correction. To simulate combined ECT-MRI, the

brain component of the MR image is extracted and is realignedto a preliminary reconstruction

of the emission data using an automatic algorithm. Since it has been shown that scatter and

attenuation correction of the preliminary reconstructed emission data improves registration, a

model-based scatter correction and calculated uniform fit-ellipse method are performed before

the preliminary reconstruction. The recorded spatial transformation is then applied to the original

MR image. Then, to determine the attenuation map, the MR image is segmented into five regions

of air, brain tissue, skull, nasal sinuses and scalp by meansof a fuzzy clustering segmentation, in

particular a FCM algorithm, where a contour detection algorithm is used to identify the external

boundary of the head. Because brain and scalp tissue have the same attenuation properties,

they are merged afterwards. Appropriate attenuation coefficients are now assigned to the four

remaining regions followed by Gaussian smoothing to approximate the resolution of the ECT

scanner, resulting in the final MRI-guided patient-specific attenuation map. An attenuation map-

guided scatter correction using the single-scatter simulation technique is performed, prior to the

non-uniform attenuation correction and the final reconstruction of the emission data.
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Such as CT-based attenuation correction using segmentation, the segmented MRI method

has the problem that any errors in segmentation can lead to artifacts in the reconstruction from

the attenuation corrected data. The authors indeed reported that the difficulties associated with

automatic segmentation of the skull on the T1-weighted spin-echo images using the FCM algo-

rithm led to some manual intervention of the operator. This intervention consisted in filling the

complexly shaped skull base using a morphological closing operation to make it more uniform.

Since the FCM algorithm does not place any contextual constraints on the membership functions,

excessive noise and other artifacts such as intensity inhomogeneities that are not unlikely in MRI

may obstruct the segmentation. Furthermore, certain tissue regions will have densities that are

not accurately represented by a discrete set of segmented values. Additionally, the attenuation

of the classified tissues has to be assumed. Another very important drawback of segmented MRI

is that some anatomy may be missed by MRI, as, for example, bothbone compacta and air do

not contribute a MR signal whereas their attenuation coefficients are maximally distinct [20].

Notwithstanding, the authors reported results that indicate a small but noticeable improvement

in image quality as a consequence of the reduction of noise propagation from transmission to

emission data. But it has also be noted that these results are restricted to brain PET imaging and

the amplification for whole-body PET imaging has yet to be investigated.

3.4.2 Nuclear-medical Magnetic Resonance Atlas Method

Krieg et al. [31] developed a method that adapts the idea of atlas-based methods to an MRI-

guided approach. An atlas with a reference MR image and a corresponding correction data

set, entitled nuclear-medical magnetic resonance (NM-MR) atlas, is generated and provided for

attenuation correction of the emission data. The information required for attenuation correction

is present, for example, in the form of attenuation coefficients due to the correction data set.

The data points of the reference MR image are either associated directly with data points of

the correction data set or indirectly with values of the correction data set via the assigned MR

intensities. For the first purpose, the reference MR image and the correction data set are stored

in a common matrix. For the second purpose, the reference MR intensities are classified into the

most probable tissue types and known attenuation coefficients are associated with the intensity

intervals of classified tissue types. The determination of the patient-specific attenuation map is

carried out in two steps, where the MR image of the patient is assumed to be co-registered with

the emission data. First, the reference MR image of the NM-MRatlas is registered with the MR

image of the patient and the transformation is recorded. Then, the recorded transformation is

applied to the correction data set yielding the attenuationmap used for attenuation correction
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in case that the correction data set consists of appropriateattenuation coefficients. Compared

to the atlas-based methods described in the previous section, the NM-MR atlas-based method

generally just substitutes the registration of the atlas with a preliminary reconstruction of the

emission image with a registration of the reference MR imagewith the co-registered MR image

of the patient. However, this difference has an important impact on the registration accuracy that

can be achieved, as an intramodality instead of intermodality registration is employed, where

both images to be registered image the same type of information.



Chapter 4

Magnetic Resonance Imaging-guided

Computed Tomography Prediction Method

The combination of PET with MRI instead of CT is currently in progress while first brain im-

ages have yet been published, demonstrating the feasibility of this technological evolution [50].

However, it has also been emphasized that a major issue is thederivation of an accurate non-

uniform attenuation map from the simultaneously acquired MR image. Recently, Zaidi [65]

occupied himself with the question if MRI-guided attenuation correction is a viable option for

dual-modality PET-MR imaging, where he outlined the difficulties associated with such an ap-

proach. The major difficulty lies in the fact that the MR signal or tissue intensity level is not

directly related to electronic attenuation, which rendersconversion of MR images to attenuation

maps less obvious. Moreover, pixel values in MRI are not normalized as is the case in CT, where

Hounsfield units determine different tissue types. In MRI, different types of tissues can have

identical signal intensities and similar types of tissue can have different signal intensities. In

addition, signal intensity varies strongly between MR images. On the other hand, transmission

imaging is no choice for PET-MRI because of the limited space available, thus, circumventing

the placement of external radionuclide sources. Beneath thefew already proposed MRI-guided

attenuation correction approaches, little convincing results have been achieved so far.

The evaluated CT atlas-based approach to determine the attenuation map guided by MRI is

presented in this chapter, moreover, it is related to other proposed approaches where reasonable.

At first the basic concept of the approach is explained. Afterwards, both major steps, first to

predict a CT image from the MR image of the patient, second to translate the CT image to a

patient-specific attenuation map, are described in detail.At last follows a brief recapitulation of

the compensation for photon scatter and attenuation duringreconstruction.

39
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4.1 Overview

The idea of the presented approach to determine the attenuation map from a co-registered MR

image is quite straightforward and can be viewed as a combination of different already proposed

attenuation correction methods or the application of CT-MR registration followed by any CT-

based technique. However, as usual, the difficulties are hidden in the details that have to be solved

to come up with a practical working solution, eventually. The flow of data and the steps deployed

to determine the attenuation map at the emission photon energy from the patient’s MR image are

summarized in Figure 4.1. In a first step, an approximation ofa X-ray transmission scan of

the patient is predicted using the anatomical information provided by MRI. This step applies

deformable CT-MR registration and makes use of a CT atlas. Thenthe patient’s attenuation map

at the emission photon energy is determined applying well-known CT-based techniques. After

the attenuation map is available, it can be incorporated in the reconstruction of the emission data

to compensate for scatter and attenuation.

Since methods are yet being successfully applied which determine the attenuation map from

a CT image, the second step of generating the attenuation map at the emission photons’ energy

from the predicted CT image does not pose a problem. Hence, themain step whose feasibility

and robustness has to be investigated is the CT prediction step.

Figure 4.1: Compact flow chart of the MRI-guided CT prediction method
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4.2 Computed Tomography Prediction

The anatomical information contained in the MR image is usedto predict a CT of the patient.

Deformable CT-MR registration is applied to infer CT numbers from a suitable CT image pro-

vided by an atlas, optionally pre-selected from a set of reference CTs. The resulting CT image

is considered as a prediction of a X-ray transmission scan ofthe patient pictured by MRI that

is scaled at Hounsfield units and is referred to as pseudo CT. The corresponding flow chart ex-

panded on the prediction of the pseudo CT is given by Figure 4.2.

The used terminology already implies the relation to the IADmethod proposed by Stodilka

et al. [53], that was more recently extended by Montandon andZaidi [38]. In contrast, a CT at-

las is used and the attenuation distribution is inferred using a spatial transformation obtained by

CT-MR instead of atlas-ECT registration, which is more robustdue to the registration of anatom-

ical images only. Registration of anatomical and functionalimages may be difficult, as the func-

tional image may provide insufficient anatomy. Moreover, the method introduced in this chapter

is quite similar to the method proposed by Krieg et al. [31], with the correction data set consisting

of proper CT numbers. Again, the actual difference is the determination of the transformation,

which is accomplished indirectly by Krieg et al. using intramodality registration but directly by

the investigated method using intermodality registration.

4.2.1 X-ray Transmission Atlas

The foundation of the CT prediction is a reliable atlas from which an appropriate CT image can

be attained that ideally would correlate with the unknown patient-specific spatial distribution of

CT numbers. Clearly, a global atlas will almost never meet thisideal situation, however, the

atlas can provide CT images which are common for human beings.Basically two types of CT

atlases suggest themselves: An atlas consisting of only onerepresentative average CT or an atlas

composed of a whole set of average CTs each representative forjust a specific subgroup. An

advantage of the latter is that it may also contain average CTsimaging abnormalities ordinary

for different diseases. Moreover, the set of CT images shouldmaintain combinations of opposing

features like child and grown-up, skinny and plump, male andfemale, especially in regions where

it makes appreciable difference such as the thorax and pelvis. On the other hand, a complex

atlas composed of a set of CTs requires more disk space and moreimportantly does it require an

appropriate template selection strategy on the basis of thepatient’s MR image that utilizes pattern

classification. This classification increases the complexity even more and may also increase the

sensitivity of the CT prediction. However, an operator couldpre-select a suitable subset.
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4.2.2 Deformable Registration

To infer the spatial distribution of CT numbers, a deformableCT-MR registration, in particular

non-parametric registration following rigid pre-registration, is suggested. The mathematical set-

ting of such a deformable registration and numerical schemes to solve this kind of mathematical

problem were given by Modersitzki [37] in his extensive and mathematical precisely phrased

book on numerical methods for image registration. The pre-registration can be carried out man-

ually and/or automatically, where the transformation is restricted to translation and rotation only.

In this section, the required mathematical setting used by Modersitzki is first re-considered, fol-

lowed by the general mathematical framework of the non-parametric registration problem. Af-

terwards, the distance measure commonly used for automaticintermodality registration and the

recommended regularization of the non-parametric registration are discussed.

Mathematical Setting According to Modersitzki [37, ch. 3.1], in the following an imageb

is viewed as a mapping which assigns each spatial locationx belonging to a certain domain

Ω ⊂ IR3 a gray valueb(x) ∈ IR. Furthermore, the functionb has the following properties:

1. b is compactly supported,

2. 0≤ b(x) < ∞ for all x ∈ IR3 and

3.
∫

IR3 b(x)kdx is finite fork > 0.

As an image is digitalized, which means that intensities arediscrete and given on a discrete grid

only, an appropriate interpolation scheme has to be chosen that provides interpolated intensity

values for non-grid points, too. The interpolation scheme is mostly based on linear interpolation

and has to avoid interpolation artifacts which were investigated by Pluim et al. [44].

Considering the registration problem, cf. [37, ch. 3.3 and 8], a referenceR and a templateT

are given and a spatial transformationϕ is searched such that the deformed templateTϕ, where

Tϕ(x) := T ◦ ϕ(x), is as similar as possible to the referenceR according to the similarity

measure used. In the case of non-parametric registration the transformationϕ can be written as:

ϕ(x) = x − u(x) , (4.1)

whereu : IR3 → IR3 is the so-called deformation or displacement field. Consequently, for

readability reasons, the by the deformationu deformed templateT is denoted as:

Tu(x) := T (x − u(x)) . (4.2)
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Variational Formulation A direct minimization of a suitable distance measureD is not pos-

sible since this problem is ill-posed, which means that small changes of the input data may lead

to large changes of the output data. Moreover, as the problemis not convex, no unique solu-

tion exists and the deformation may not even be continuous. The remedy is to impose implicit

assumptions on the transformation and thus to come up with anappropriate measure both for

the similarity of the images as well as for the likelihood of anon-parametric transformation.

Therefore, a regularizing term or smootherS is introduced which makes it possible to distin-

guish particular transformations which seem to be more likely than others. So, the variational

formulation of the non-parametric registration problem isgiven by [37, Problem 8.1]:

û = arg min
u

J [u] , (4.3)

whereJ is a functional defined as:

J [u] := D[R, Tu] + αS[u] . (4.4)

The distance measureD can be viewed as the driving force of the registration, whereas the reg-

ularizer controls the transformation. Moreover, the parameterα ∈ IR+ weights the regularizing

term relative to the distance measure or, in other words, depicts the amount of regularization.

A necessary condition for a minimizer̂u of the problem given by equation (4.3) is that the

Gâteaux derivativedJ [û; v] of J , also known as the first variation ofJ in the direction ofv,

vanishes for all suitable perturbationsv. The stated condition leads to the corresponding Euler-

Lagrange equations and finally to a system of non-linear partial differential equations.

Entropy The distance measure commonly used for automatic intermodality registration is

nowadays mutual information. This distance measure is based on entropy, which itself has been

used as distance measure as well. Hartley first introduced such an entropy, a measure for the

information of a message withs different possibilities for each symbol that increases linearly

with the lengthn of a message and that depends on the number of possible messagessn [45]:

H := log sn = n log s . (4.5)

The larger the number of possible messages, the larger the amount of information to get from a

certain message. If only a single message is possible, no information can be gained by receiving

this message, since it was already known that this is the onlyone which could be received. In

this respect, the measure can be viewed as a measure of uncertainty.
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Later on, Shannon introduced an entropy that also minds thatdifferent symbols may have dif-

ferent probabilities to occur. Hence, he weighted the information per outcome by the probability

of that outcome occuring. The established Shannon entropy is defined as [45]:

H :=
m

∑

i=1

pi log
1

pi

= −
m

∑

i=1

pi log pi , (4.6)

wherem is the number of possible events and the term1
pi

inversly relates the information gained

from an event to the propabilitypi that it takes place. The more rare an event, the more meaning

is assigned to the occurence of the event. When all messages are equally likely, the entropy is

maximal, because it is completely uncertain which message will be received. Shannon’s entropy

is the average amount of information to be gained from a certain set of events.

In the case of an imageA, the Shannon entropy:

H(A) := −

∫ ∞

−∞

pA(a) log pA(a)da , (4.7)

is a measure of dispersion ofpA, the density of the intensity valuesa. The density of an image’s

intensities can be estimated from the histogram of its discrete representation, which counts the

times of occurence of each intensity value. Dividing each histogram entry by the total number

of pixels results in the discrete probability distributionof the intensities. The density function of

these can then be estimated applying non-parametric density estimation techniques as the Parzen

window method with a Gaussian window function as described for instance in [14, ch. 4.3].

A density with a single sharp peak corresponds to a low entropy value, whereas a dispersed

density yields a high entropy value.

The entropy of the joint density estimated from the joint histogram of two images, in turn

calculated for the overlapping parts of the images, can be used to measure the degree of regis-

tration, as the joint histogram shows more dispersion whilethe images are worse registered and

vice versa. The joint entropy of two images is defined as [45]:

H(A,B) := −

∫ ∞

−∞

∫ ∞

−∞

pA,B(a, b) log pA,B(a, b)dadb , (4.8)

wherea andb are the intensity values in imageA and imageB, respectively. If the joint entropy

is minimal, then the two images should be registered [45].
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Mutual Information Since the joint entropy is computed for the overlapping parts of the im-

ages, it is sensitive to the size and the contents of the overlap. A problem that can occur when

using joint entropy as distance measure is that low values can be found for complete misreg-

istrations, for example when only background overlaps. Mutual information tries to avoid this

problem by including the marginal entropies [45]:

MI(A,B) := H(A) + H(B) − H(A,B) . (4.9)

The marginal entropies will have higher values if the imagescontain structures such as anatomy,

and low values for background only. Mutual information therefore penalizes transformations that

decrease the amount of information in the separate images. However, it is still not completely

immune to the overlap problem, but less than joint entropy.

Another reasonable interpretation of mutual information is that it measures the amount of

informationA contains aboutB and, asMI(A,B) = MI(B,A), the amount of informationB

contains aboutA. Hence, it is mutual information. This can be seen from [45]:

MI(A,B) := H(B) − H(B|A) , (4.10)

whereH(B|A) is the conditional entropy based on the conditional densitypB|A(b|a), the chance

of the intensity valueb in the imageB given that the corresponding intensity in the imageA has

the valuea. The maximization of mutual information such that the amount of information the

images contain about each other is maximal should find the deformation that registers the two

images.

A last well-known definition of mutual information makes useof the so-called Kullback-

Leibler divergence, which is a measure of the distance between two densities [45]:

MI(A,B) :=

∫ ∞

−∞

∫ ∞

−∞

pA,B(a, b) log
pA,B(a, b)

pA(a)pB(b)
dadb . (4.11)

It therefore measures the distance between the joint density of the images’ intensities and the

densitypApB, which is equal the joint density if the two densities are independent. In this case

mutual information reaches its minimum. According to this,mutual information is a measure

of dependence between the two images. The assumption is thatthere is maximal dependence

between the intensities when the images are correctly aligned.

It is important to note that all three definitions of mutual information given by equations

(4.9), (4.10) and (4.11) are identical and can be rewritten into each other [45].
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Since mutual information is based on the joint density of theimages’ intensities instead of

the intensity values directly and as it reduces the overlap problem compared to joint entropy,

it is commonly used for automatic intermodality registration. Therefore, the distance measure

for the non-parametric registration problem stated by equation (4.3) and used for the pseudo CT

generation is suggested to be defined as:

D[R, Tu] := MI(R, Tu) . (4.12)

Curvature Registration The recommended regularization to control the deformationof the

non-parametric registration used by the presented approach for CT prediction is based on second

order derivatives:

S[u] :=
1

2

3
∑

l=1

∫

Ω

(∆ul(x))2dx , (4.13)

This regularizing term was introduced by Fischer and Modersitzki [37, ch. 12] in order to cir-

cumvent the pre-registration required by other registration techniques such as elastic, fluid and

diffusion registration. However, according to Modersitzki, the main point is not that the addi-

tional pre-registration becomes redundant but that the registration becomes less dependent on the

initial position of the reference and template images. Nevertheless, the initial position still plays

an important role and it is not advisable to skip the pre-registration. The integrand ofS given

by equation (4.13) might be viewed as an approximation of thecurvature. Thus, the idea of the

regularizer is to minimize the curvature of the components of the deformation. Therefore, this

type of registration is called curvature registration. A property of curvature registration is that

the transformation will be smoother than the ones obtained by a registration based on first order

derivatives regularizers, like diffusion.
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Figure 4.2: Compact flow chart expanded on the CT prediction



48 CHAPTER 4. COMPUTED TOMOGRAPHY PREDICTION METHOD

4.3 Attenuation Map Generation

After the pseudo CT is obtained, which is considered to be an approximation of an actual CT

scan of the studied patient, well known CT-based techniques can be applied to determine the

patient-specific attenuation map. At the energies of X-ray spectra, photoelectric interactions

contribute significantly to the attenuation of photons especially for bone but less for soft tissue.

Moreover, these interactions with matter are almost negligable in ECT especially in PET. Hence,

simple uniform scaling of the CT numbers is not sufficient and lacks accuracy at most for bone.

Therefore, commercial hybrid ECT-CT systems established in clinical environments commonly

make use of the bilinear scaling method described in section3.2.2 to translate the CT numbers of

the sequentially acquired CT image to attenuation coefficients, since it considers the difference

in scaling for bone and soft tissue. Consequently, the bilinear scaling is also the method of choice

to generate an attenuation map from the predicted CT. The compact flow chart expanded on the

generation of the attenuation map is shown in Figure 4.3.

The suggested bilinear function to translate the CT numbersH to the corresponding linear

attenuation coefficientsµ in particular reads as follows:

µ =











µwater
H+1000

1000
, H ≤ 0

µwater + H
µCT

water(µbone−µwater)

1000(µCT
bone

−µCT
water)

, H > 0

, (4.14)

whereµCT
water andµCT

bone are the estimated attenuation coefficients of water and boneat the ef-

fective CT energy andµwater andµbone are, analogously, the theoretic attenuation coefficients of

water and bone at the emission photon’s energy.
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Figure 4.3: Compact flow chart expanded on the attenuation mapgeneration
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4.4 Reconstruction

The correction of the emission data for photon attenuation is carried out during the reconstruc-

tion process. As noted in section 2.4, the attenuated radon transform in SPECT given by equa-

tion (2.9) cannot be inverted analytically. Therefore, iterative reconstruction algorithms are

commonly applied in SPECT. These algorithms incorporate theknowledge of the attenuation

coefficients given by the obtained attenuation map into the successive forward and backward

projections. Besides, a scatter model based on the attenuation of the different tissues can be

incorporated the same way. When applying attenuation correction, also correcting for scatter is

recommended. Otherwise, overcorrection may occur, cf. section 2.3.2. The emission data in

PET, however, can be corrected for attenuation before the actual reconstruction as shown already

in section 2.4. The sinogram of the ACFs, cf. equation (2.11),is computed by forward projecting

the attenuation coefficients. Then the uncorrected PET sinogram is multiplied with the sinogram

of the ACFs to get the attenuation corrected PET sinogram, cf.equation (2.12). Before, a scatter

correction method that also makes use of the attenuation mapis commonly applied. However, as

both scatter and attenuation correction in PET are just multiplicative corrections of the measured

emission data, the order is not of importance. After that, the corrected PET data is reconstructed

using FBP reconstruction algorithms. Nevertheless, iterative reconstruction algorithms are nowa-

days commonly applied in PET as well.
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Figure 4.4: Compact flow chart expanded on the reconstruction
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Chapter 5

Evaluation

In the previous chapter an approach to compensate emission data for photon attenuation that

makes use of a co-registered MR image and an atlas CT to generate a pseudo CT of the pa-

tient which then is translated to an attenuation map was introduced and described in detail. The

evaluation of the feasibility of this approach was the goal of this study. As the generation of an

attenuation map from a co-registered CT image, as consideredin section 3.2.2, is currently prior

art for combined SPECT-CT and PET-CT scanners, this step does not pose a problem. Therefore,

the pseudo CT prediction is the linchpin of the entire approach. Hence, evaluating the robust-

ness and accuracy of the CT prediction based on non-parametric registration is fundamental for

demonstrating the feasibility of the approach. Moreover, the accuracy of such generated pseudo

CT has to be shown, where the pseudo CT has to be as accurate as necessary to get corrected

emission images which are clinical acceptable. On the otherhand, the CT prediction strongly

depends on the CT atlas and the used template selection strategy. However, the evaluation of

these issues is left open because the sound expedience of thepseudo CT generation based on

non-parametric registration only has to be shown first.

The materials and methods applied for evaluation are summarized in this chapter. Afterwards,

the results of the evaluation are presented and discussed visually.
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5.1 Materials and Methods

As there was no PET-MR scanner available for the evaluation,clinical data acquired at the Uni-

versiẗatsklinikum Erlangen on a PET-CT scanner (Biograph 64, Siemens Medical Solutions,

Erlangen) and a stand-alone MR scanner (Magnetom Trio-Tim,Siemens Medical Solutions,

Erlangen) was adopted. The co-registered CT of the PET-CT image pair was considered as

gold standard for the CT prediction, since it is an actual X-ray transmission scan of the pa-

tient also used for attenuation correction by the reconstruction algorithm of the PET-CT scanner.

In addition, because the MR image was not aligned with the PETdata, the CT image of the

PET-CT image pair was used to determine the rigid transformation that registers the MR image

with the PET data, simulating a simultaneous PET-MRI acquisition. A rigid transformation was

sufficient, as only brain studies were evaluated. Figure 5.2illustrates the flow chart of the CT

prediction adapted for evaluation.

The CT atlas used for evaluation consisted of three head CTs. Two of them were ex-

tracted from CT images of whole-body scans. The whole-body CTswere acquired at the Uni-

versiẗatsklinikum Erlangen on the PET-CT scanner, whereas the other head CT was captured

on a stand-alone CT scanner (Somatom Sensation 64, Siemens Medical Solutions, Erlangen).

Consequently, the two atlas CTs extracted from the whole-bodyCTs showed less resolution than

the third one, whereas this pictured the upper half of the head only. Some acquisition and re-

construction characteristics of the atlas CTs are summarized in Table 5.1. Moreover, Figure 5.1

draws example slices of the atlas CT images, in particular, one slice per transversal, sagittal and

coronal plane of each.

The registration algorithms applied for evaluation were implemented by Hahn and Daum,

both PhD students at the Chair of Pattern Recognition and furthermore the main academic

advisors of the work at hand. The implementation of these algorithms is based on the numerical

schemes derived by Modersitzki [37], where the mathematical problem of non-parametric regis-

tration was defined as in equation (4.3) with mutual information as distance measure,

cf. equation (4.12), and regularized by curvature, cf. equation (4.13). Moreover, the non-

parametric registration employed a multi-level approach.Therefore, a registration pyramid with

a given number of levelsL is created, where the registration on levell ∈ [1..L] is carried out

with the images downsampled by a factor of1/2L−l. The initial transformation on the first level

is the identity and on the higher levels the transformation resulting from the registration on the

preceding level.
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The clinical software InSpace 2008 was used for the evaluation. It is a volume imaging

application for interactive viewing of volume data that is exclusively developed for Siemens

Medical Solutions by HipGraphics Inc., Baltimore, and mainly be used in the research of medical

image processing algorithms. An important aspect of this volume imaging application is that it

maintains a plugin interface. This enabled the integrationof specially designed plugins developed

for the evaluation of the pseudo CT generation based on non-parametric registration. The rigid

registration tool supplied by Hahn and Daum was also integrated in InSpace.

The main plugin of the evaluation toolkit encapsulated the non-parametric registration and

provided an interface for other plugins to adjust its parameters and to enforce the consecutive ex-

ecution of defined workflow steps. These steps are the import of the reference and template from

InSpace, the pre-processing, the actual non-parametric registration, the post-processing of the

registration results and finally the upload of the post-processed registered template. Besides, all

results, including intermediate ones such as the pre-processed volumes, can be retained by other

plugins for further processing or output. The user transformation of the pre-registration and a

by manual cropping defined region of interest are optionallyconsidered during the import. The

pre-processing includes the resampling of the imported images such that the resampled images

cover the same physical extent and are sampled on the same discrete grid, matching the resolu-

tion of both images. The parameters of the non-parametric registration are the number of levels

used for the multi-level registration, the stopping criteria at the last level which get automatically

relaxed for the other levels, the stiffness of the deformation and the distance measure to use. The

stiffness represents the parameterα in equation (4.4) which determines the amount of regulariza-

tion, where the stiffness is notα directly. The higher the stiffness, the more regularization of the

deformation takes place and vice versa. When mutual information is used as distance measure,

the Parzen estimation of the joint density is influenced by the number of histogram bins and the

kernel width specified relative to the width of a single histogram bin. Finally, the optional post-

processing resamples the registered template, either to the original size of the imported template

or to a specific size or resolution.

A second plugin provided the user interface to the main plugin to guide through the steps

of the workflow and to enable the setting of the parameters fordifferent evaluation studies.

Screenshots of the user interface are shown in Figure 5.3 foreach particular workflow step.

To assist the analysis of the evaluation, two further plugins recorded the parameter settings

during the execution and sampled intermediate results suchas the pre-processed template and the

joint histogram used to measure the mutual information. Thereby, a third plugin encapsulated the

output operations and a last plugin provided a user interface to store loaded or uploaded volumes.
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label Atlas 1 Atlas 2 Atlas 3

body part head head head (upper half)

sex female female unknown

size 192 x 235 219 x 300 512 x 512

number of slices 117 120 28

pixel spacing (mm x mm) 0.95 x 0.95 0.95 x 0.95 0.65 x 0.65

slice thickness (mm) 2.00 2.00 4.00

scanner Biograph 64 Biograph 64 Somatom Sensation 64

low dose yes yes no

Table 5.1: Overview of atlas CTs used for evaluation

The post-processing and analysis of the generated pseudo CTswas accomplished by taking

advantage of the capabilities of a prototyping environment. This Image Processing and Proto-

typing Environment (IPE) was developed by the author of the work at hand while working as a

student assistant at the Chair of Pattern Recognition. It enables the creation of image processing

networks consisting of data processing modules, which can have inputs, produce outputs and

are controlled by adjustable parameters. The main application of the IPE is the IPE Network

Editor, a graphical user interface for creating, editing, configuring and executing such networks.

Having an IPE network defined and stored as network description file, another application, called

IPE Network Runner, can be used to execute the network from thecommand line with specified

parameters passed as command arguments. Moreover, a pluginfor InSpace 2008 exists, that

integrates the IPE into InSpace.

Applying the introduced materials and methods, the evaluation studies basically complied

with the following protocol. First, the co-registered MR image of the patient whose PET data

is to be corrected and a CT image manually selected from the CT atlas are loaded in InSpace.

Optionally, the atlas CT image is manually cropped such that the template CT used for the CT

prediction covers only the body part pictured by MRI. Next, the template CT is automatically

pre-registered with the MR image using the rigid registration plugin, with manual adjustment if

needed. Then, the plugin for logging the parameters and the plugin for sampling intermediate

and final results are configured and attached to the main plugin. The reference and template

are now imported and pre-processed by the main plugin as described before, whereby the im-

ages are downsampled to reduce the complexity of the non-parametric registration. Then, the

non-parametric registration is performed and the registered template is optionally upsampled

afterwards. To visually assess the resulting pseudo CT it is uploaded in InSpace.
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(a) Atlas 1

(b) Atlas 2

(c) Atlas 3

Figure 5.1: Example slices of the atlas CTs used for evaluation
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Figure 5.2: Compact flow chart expanded on the CT prediction adapted for evaluation
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(a) Import pre-registered images (b) Pre-process imported images

(c) Register pre-processed images (d) Post-process registered template

Figure 5.3: Step-by-step user interface to the non-parametric registration
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5.2 Results

As there was only appropriate data of PET-CT and MRI acquisitions of a single subject available,

the evaluation was based on just one brain imaging study. Therefore, the quantitative measure-

ments have minor statistical meaning. They are computed to assess the results of the investigated

study not only visually and, nonetheless, underline the proof of concept. Clearly, the evaluation

can demonstrate initial results only but no conclusive statement about the reliability or robustness

of the evaluated method can be made. However, the feasibility of the method can be delineated

to some degree. Example slices of the brain CT, MR and PET images of the patient used for

evaluation are drawn in Figure 5.4.

Pseudo CTs were generated using each of the three atlas CTs one at a time as template. Com-

mon parameter settings for the pseudo CT generation are outlined in what follows, s.a. Table 5.2.

The reference MR and template CT were downsampled to an image size of 128 x 128 x 128,

matching the resolution to 1.96 x 1.96 x 1.74 mm3. Moreover, the non-parameteric registration

was performed on four levels with a maximum of 20, 15, 10 and 5 iterations at each according

level. Another stopping critera was a minimum absolute value of the distance measure, termed

minimum delta, of 10-6. The number of histogram bins used to determine the histogram of dis-

crete intensity values was equal 64 and the width of the Gaussian kernel functions used for the

density estimation was set to two times of the width of a single histogram bin. Afterwards, the

generated pseudo CTs were upsampled again to match the size and resolution of the actual CT

of the patient.

The parameter that influences the registration result at most is the amount of regularization,

the value of the stiffness parameter, accordingly. Therefore, this parameter was adjusted in a

first evaluation study with one common atlas CT as template andthe different resulting pseudo

CTs were compared both to the gold standard and to each other for determining the range of

appropriate values for the stiffness of reasonable deformations. For that reason, mean absolute

value differences were computed and assessed both visuallyand quantitatively. For the compu-

tation of the difference image between a specific pseudo CT andthe actual CT, the images were

resampled on a common grid with a uniform spacing of 1 x 1 x 1 mm3, resulting in a size of

249 x 249 x 222. Furthermore, the background of both was normalized in the following sense.

All intensities of the pseudo CT that had a value below a threshold of -750 HU were set to

-1024 HU, the intensity value corresponding to air. Then, all intensities in the actual CT, where

the corresponding intensities in the pseudo CT showed that background value were also set to

-1024 HU. This way, both images comprised the same foreground region with removed back-

ground noise, while especially the borders of the pseudo CT were not defined after deformation.
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Another reason for this was that the actual CT pictured also the scanner table while the atlas

CTs did not. By applying the mentioned steps, this table was removed from the actual CT, too.

Otherwise, it would have caused high differences, misleading the computation of the mean value.

Figure 5.5 plots the set values of the stiffness parameter tothe corresponding mean normalized

difference value. However, the mean absolute difference values without this normalization are

given for comparison reasons as well in Figure 5.7. Moreover, as bone contributes consider-

ably more to attenuation especially in PET, Figure 5.6 plotsthe mean difference value that was

computed by ignoring the intensities below 0 HU. From these plots, it can be concluded that the

stiffness parameter value should be chosen within the rangeof 20 to 30.

After the range of appropriate stiffness parameter values has been investigated, the stiffness

parameter for generating pseudo CTs using all three atlas CTs as template was set to 22.5, as

this value obtained the best mean normalized difference value for the atlas CT Atlas 1. Example

slices of the resulted pseudo CTs are shown by Figure 5.8. Moreover, Figure 5.9 illustrates

the normalized difference relative to the actual CT of the patient, where the images are drawn

inverted to improve the contrast. Additionally, the mean differences of these pseudo CTs are

summarized in Table 5.3. Thus, the mean of the mean normalized difference values is 40.9 HU,

which is decisively better than the average absolute error value of 100.7 HU reported by Hofmann

et al. [21] on their pseudo CT prediction method. Even if this value is compared to the non-

normalized difference values, except the one of the pseudo CTgenerated from the atlas CT that

comprises the upper half of the head only, it shows that the mean of the mean difference values

of the other two pseudo CTs is lower than the one reported by theauthors. However, it has to be

emphasized that only three pseudo CTs were generated, where one has been used to determine

the optimal stiffness parameter. Moreover, these pseudo CTswere generated for a single patient

compared to the 17 patients envolved by the evaluation of Hofmann et al.
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pre-processing

size 128 x 128 x 128

pixel spacing (mm x mm) 1.96 x 1.96

slice thickness (mm) 1.74

non-parametric registration

number of levels 4

maximum iterations 5

minimum delta 10-6

number of histogram bins 64

kernel width 2.0

(relative to histogram bin width)

post-processing

size 512 x 512 x 148

pixel spacing (mm x mm) 0.94 x 0.94

slice thickness (mm) 1.5

Table 5.2: Common settings of pseudo CT generation

atlas CT Atlas 1 Atlas 2 Atlas 3

mean normalized difference (HU) 45.41 46.98 30.26

mean water/bone mixtures difference (HU)29.73 28.80 30.26

mean difference (HU) 89.66 90.10 166.43

Table 5.3: Mean differences of pseudo CTs generated from the three different atlas CTs, with the
stiffness parameter set to 22.5
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(a) CT image

(b) MR image

(c) non-AC PET image

(d) AC PET image

Figure 5.4: Example slices of the brain images of the patientused for evaluation, where the MR
image was rigidly registered with the CT image
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Figure 5.5: Mean normalized difference values resulting from the pseudo CTs generated with
varying stiffness from the atlas CT Atlas 1 as template
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Figure 5.6: Mean water/bone mixtures difference values resulting from the pseudo CTs generated
with varying stiffness from the atlas CT Atlas 1 as template
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Figure 5.7: Mean difference values resulting from the pseudo CTs generated with varying stiff-
ness from the atlas CT Atlas 1 as template
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(a) Pseudo CT generated from atlas CT Atlas 1

(b) Pseudo CT generated from atlas CT Atlas 2

(c) Pseudo CT generated from atlas CT Atlas 3

Figure 5.8: Example slices of the pseudo CTs generated from the different atlas CTs with the
stiffness parameter set to 22.5
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(a) Difference image of the pseudo CT generated from atlas CTAtlas 1

(b) Difference image of the pseudo CT generated from atlas CTAtlas 2

(c) Difference image of the pseudo CT generated from atlas CTAtlas 3

Figure 5.9: Corresponding normalized difference images of the pseudo CTs in Figure 5.8 relative
to the actual CT of the patient
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Outlook

The employed approach for MRI-guided attenuation correction requires a reliable and locally

precise deformable intermodality intersubject registration. More precisely, the deformable reg-

istration adapted for the evaluated method is a non-parametric one that does pose the least of

all assumptions on the transformation, thus, it provides the most flexibility for the atlas registra-

tion. On the other hand, this makes it being quiet prone to finding transformations that yield a

pseudo CT which is unlikely a reliable prediction of a transmission scan of the patient’s anatomy

especially in regions such as the trunk.

The transformation is only restricted by the regularizer, where the amount of regularization

is spatially constant. However, as the anatomy varies more in some regions than in others, a

locally differing regularization of the transformation should yield more reliable transformations,

while introducing this type of prior knowledge. Moreover, as the pseudo CT strongly depends

on the atlas CT used as template, a template selection strategy which determines an atlas CT that

sufficiently corresponds with the patient is essential.

Otherwise, Hofmann et al. [20] showed on the Joint MolecularImaging Conference 2007

the reliability of a CT prediction for brain studies based on deformable B-Splines registration,

where local inaccuracies of the registration were alleviated combining several atlas registrations,

also getting rid of the need for template selection while using the anatomical information of all

atlas CTs. Therefore, the combination of the various registered atlas CTs was not just done by

averaging, but a more sophisticated regression technique that introduces pattern recognition to at-

tenuation correction. An article on their method, also further investigated in order to augment its

applicability to whole-body studies, was most recently submitted by Hofmann et al. [21], where

the combination of atlas registration with local pattern recognition is illustrated in more detail.
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The results of the various atlas registrations are incorporated as prior knowledge in the following

prediction on the basis of pattern recognition methods. According to Hofmann et al., pattern

recognition methods for predicting a pseudo CT are motivatedby the idea that, while the MR

intensity at one spatial location does not contain sufficient information to uniquely determine

its tissue class, its neighborhood, however, may add some characteristic information. This may

be particularly useful when distinguishing between bone and air as the MR intensity in both

cases is near zero. Pattern recognition methods therefore aim at determining a mapping between

the intensities of a rectangular patch of the MR image centred at the spatial location of interest

and real-valued CT intensities. A training database is created from the matching co-registered

atlas MR-CT image pairs and the mapping is obtained by solving aregression problem, where

Gaussian Process regression as described in [21] was used bythe authors. Finally, the obtained

mapping is just applied to the MR image of the patient to get the pseudo CT out of it.

Thus, opposed to the pre-selection of a specific template CT, the pseudo CT generation based

on non-parametric registration could, according to the method proposed by Hofmann et al., be

carried out for each atlas CT individually followed by regression to tickle the best local fit out of

each individual registration. To be able to learn the regression function, however, initial values

and target values have to be known for the training database.Therefore, the CT atlas has to

be replaced by an atlas consisting of matching MR and CT images, coming up with almost

the method proposed by Hofmann et al. with the B-Splines registration substituted by a non-

parametric one.
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Summary

The concept of predictive health promotes the goal to detectand treat disease even before it

has ever been expressed. Therefore, different imaging modalities visualize different aspects of a

disease in a non-invasive way.

Molecular imaging modalities applied in nuclear medicine use tracers of metabolic processes

to uncover their spatial distribution within the body. Therefore, the subject has been injected

with, has ingested or has inhaled a labeled tracer that radiates photons. Detectors collect the

endogeneous photons from outside the body, whereby the measured radiation is directly related

to the imaged physiology. The kind of imaged physiology depends on the applied radiopharma-

ceutical. Tomographic imaging modalities such as SPECT and PET enable the reconstruction of

the spatial distribution of radioactivity.

Besides the functional information gained by ECT, anatomicalinformation is often needed to

clarify the nature of an abnormality and to help diagnose or stage the underlying disease. Hence,

dual-modality imaging is nowadays the prior art in nuclear medicine, where in particular SPECT

or PET is combined with CT. This enables a reliable localization of radiopharmaceutical uptake

or guides surgery in areas where vital structures neighbor disease or in anatomically complex

regions. A major drawback of the combination of ECT and CT is thesequential rather than

simultaneous acquisition which frequently introduces misregistrations due to improper patient

positioning, respiratory motion and other voluntary patient movement. Moreover, CT gains few

soft-tissue contrast and subjects the patient to additional radiation dose.

Contrary, MRI generates high resolution images that yield better soft-tissue contrast and es-

pecially a large variety of tissue contrasts. Moreover, it does not require any ionizing radiation

and therefore can be used without restrictions in situations where radiation exposure is a concern.

Thus, the development of hybrid PET-MRI systems is currentlyin progress. Those systems will
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unify PET, MRI, fMRI and MRS, which may have even more potential as current PET-CT sys-

tems. Despite the difficulties that still have to be solved, first human brain images captured with

a prototype PET-MRI system already demonstrate the feasibility of this promising combination.

The photons emitted by the radiopharmaceutical interact with the different tissues while trav-

eling through the body. The probability that a photon will undergo an interaction while passing

through a unit thickness of tissue is called attenuation coefficient. It is not only dependent on

the tissue type but also on the photon’s energy. At the photonenergies encountered in ECT, the

major interactions are photoelectric absorption and Compton scattering, whereas especially in

PET Compton scattering dominates considerably. Both absorption and scattering are the com-

ponents of the general process of photon attenuation. The fundamental relationship of scatter

to attenuation can be summarized as follows. An absorption contributes only to attenuation, but

scatter increases attenuation and also sets up a potential scatter corruption. Attenuation and scat-

ter have opposite effects on activity quantification in the sense that photon attenuation decreases

counts, thus allowing too few photons to be detected, resulting in underestimation of activity.

In contrast, scatter corruption increases counts, thus allowing too many photons to be detected,

resulting in overestimation of activity. Both attenuation and scatter cause serious artifacts in

the reconstructed images, making it difficult or even impossible to read the images properly and

to make a reliable diagnose. Particularly, if quantitativeanalysis of the physiologic process is

desired, compensation for photon scatter and attenuation is mandatory.

To enable the compensation for scatter and attenuation, thespatial distribution of attenuation

coefficients has to be known. This knowledge can then be either incorporated into an iterative

reconstruction algorithm or the emission data can be corrected exactly before the actual recon-

struction in PET as the attenuation of photons in PET is independent of the point of emission.

Thus, attenuation correction strategies try to determine the attenuation map which represents the

spatial distribution of attenuation coefficients. The prior art of these methods are calculated,

transmission-based, atlas-based or MRI-guided methods.

Calculated approaches try to determine the body contour fromthe emission data alone and

then assign a uniform distribution of attenuation coefficients to the inside of the body. As the

resulting attenuation map is uniform, these methods are only appropriate for brain studies but

more adequate methods must be performed where the attenuation coefficient distribution is not

known a priori and also for regions of inhomogeneous attenuation. To account for the consider-

able higher attenuation of the skull, a larger coefficient can be assigned within a certain thickness

of the outline or by estimating the skull boundary from an uncorrected reconstruction.
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The most accurate attenuation correction methods are the measured methods that apply an

additional transmission scan of the patient.

In radionuclide transmission imaging an external single-photon or positron emitting source

is placed on one side of the patient and a detector on the otherside measures the transmitted

photons before, during or after emission scanning. The attenuation map can then be recon-

structed from the natural logarithm of the blank-to-transmitted sinogram ratios, where the blank

scan is performed while no patient is present in the FOV. To reduce the total acquisition time

in sequential transmission imaging, short transmission scans are usually done, increasing noise

in transmission images and therefore introducing noise in the corrected emission images. Sev-

eral approaches such as the segmentation of the reconstructed attenuation map and non-linear

filtering have been proposed to reduce the noise. Using single-photon emitting sources also in

PET made simultaneous transmission-emission imaging possible which has proven to be very

practical especially in whole-body oncology studies. When the photon energy in transmission

imaging is not the same as in emission imaging, which is particularly the case in simultaneous

transmission-emission imaging, the reconstructed attenuation map has to be properly scaled.

CT-based attenuation correction is the method of choice for hybrid ECT-CT systems. The ad-

vantages are the high resolution transmission images with much lower noise, the short transmis-

sion times and that it is no longer necessary to include external radionuclide sources. However, as

the X-ray source emits photons which cover a relatively broad energy spectrum compared to the

mono-energetic photons emitted by the radiopharmaceutical, the translation of measured attenu-

ation coefficients to the emission photons’ energy is more difficult. Basically five methods have

been proposed: segmentation, uniform scaling, bilinear scaling, hybrid segmentation/scaling and

dual-energy decomposition. The bilinear scaling is currently the most widely applied method. It

can be considered as combining an air/water mixture model for CT numbers less than zero and a

water/bone mixture model otherwise.

Atlas-based methods try to derive the attenuation map from an atlas of attenuation coefficients

scaled to the appropriate photon energy. This is accomplished by anatomic standardization using

deformable image registration. A conceptual limitation ofproposed approaches is that exist-

ing patient-specific anomalies cannot be modeled in an atlasobtained from a single or even an

average representation of the population.

The goal of MRI-guided attenuation correction is to derive the attenuation map from an MR

image of the patient whose emission data is to be corrected. This kind of attenuation correction

is very attractive for hybrid PET-MRI systems. However, the main difficulty is to find a map-

ping between the non-standardized, by means of magnetic field inhomogeneities distorted MR
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intensities and the appropriate energy-dependent attenuation coefficients. Because of that, few

publications addressed this type of non-uniform attenuation correction so far. Three different

approaches have been proposed: a segmentation-based approach, a MRI-guided atlas-based ap-

proach and most recently an approach that combines pattern recognition and atlas registration,

The method evaluated in this work follows the second.

The evaluated approach for attenuation correction predicts an X-ray transmission scan of the

patient based on the anatomical information provided by MRI.Therefore, CT numbers are ob-

tained from a suitable atlas CT using non-parametric image registration with mutual information

as distance measure and regularized by curvature. Then, well-known CT-based techniques to de-

termine the attenuation map from the generated pseudo CT can be applied. The common bilinear

scaling method is suggested to be used to translate the CT numbers to properly scaled attenuation

coefficients. The flow of data and the steps deployed to determine the patient-specific attenuation

map from the co-registered MR image are summarized in Figure7.1.

The evaluation was performed with visual assessment and quantitative analysis. The CT

prediction was in the spotlight of this evaluation, since the generation of the attenuation map from

a CT image of the patient is yet commonly applied by hybrid PET-CT systems. To maintain the

evaluation, a protocol was defined and an evaluation toolkitwas implemented. The CT prediction

was adapted for evaluation as there was no PET-MR scanner available. Instead, clinical data

acquired on a PET-CT and a stand-alone MR scanner were used, where the MR image was

rigidly registered with the CT of the PET-CT image pair to alignit with the PET data. As only

few studies with a PET-CT and an appropriate MR scan of the samepatient were available during

this work, the evaluation could only be carried out for a single brain study. First, the optimal value

for the stiffness parameter of the applied non-parametric registration algorithm was determined

by quantitative analysis of the mean differences. These differences were computed for pseudo

CTs generated from the same atlas CT but with varying stiffness. For each of these pseudo CTs,

a mean normalized difference value was obtained in the sensethat the background of both the

pseudo CT and the actual CT was matched and intensities below a lower threshold were set

to -1024 HU. It turned out that the optimal stiffness parameter lies in the range of 20 to 30.

Consequently, a stiffness parameter of 22.5 was used for the following generation of pseudo CTs

from the available atlas CTs. The mean of the mean normalized difference values of the pseudo

CTs was 40.9 HU.

To improve the results of the non-parametric registration,prior knowledge in the form of

locally dependent regularization could be implemented instead of just a global degree of regu-

larization, considering that anatomy varies in some regions more than in others. Moreover, to
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predict a CT of the patient more reliable and robust and opposed to the pre-selection of a specific

template CT, the pseudo CT generation based on non-parametricregistration could be carried

out for each atlas CT individually followed by regression to tickle the best local fit out of each

individual registration. To be able to learn the regressionfunction, however, initial values and

target values have to be known for the training database.
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Figure 7.1: Flow chart of the MRI-guided CT prediction method



Appendix A

Related Patents

While methods for scatter and attenuation correction of prior art and most recently developed

methods are considered in chapters 3 and 6 and while the MRI-guided CT prediction method

evaluated in this work is yet concisely compared to these approaches where reasonable, patents

and patent applications of the most similar ones of these methods are delineated in this appendix,

where the evaluated method is distinguished from the claimed methods.

The atlas-based IAD method for scatter and attenuation correction introduced in section 3.3.1

was disclosed through the patent application [46] and is protected by the European patent [47]

and the United States patent [54]. These patents protect theidea of using a computer model of the

density distribution within the region of interest alignedwith the emission image to guide scatter

and attenuation correction. In general, the claimed methodcomprises the steps of aligning a 3D

computer model representing the density distribution withthe emission data and applying scatter

and attenuation correction using the aligned computer model as a guide. In particular, the used

computer model is in the form of an atlas that consists of two components, a functional and an

anatomical one, where the functional component is used for aligning the atlas with a preliminary

reconstruction of the emission data and the anatomical component simulates a transmission scan

used for scatter and attenuation correction. Although, theapproach evaluated in this work as well

comprises atlas registration to align a transmission scan with the emission data, the alignment is

carried out by registration of the atlas with an already co-registered MR image and not by direct

alignment of the atlas with the emission data to be corrected. Thus, even though the presented

approach is similar to the patented method, actually, this method is not claimed by these patents.
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Krieg et al. have submitted the patent application [31] of their proposed NM-MR atlas

method introduced in section 3.4.2, which was approved and their method is now protected

by the United States patent [32]. This method adapts an already co-registered MR image of the

patient for atlas registration, where the atlas again consists of two components, a reference MRI

acquisition and a correction data set, that are connected toeach other either directly or indirectly.

If connected directly, the reference MR image and the correction data set are stored in a common

matrix, thus, a data point of the correction data set is assigned to each data point of the MR

image. Otherwise, if the data sets are connected indirectly, intervals of MR intensities of the

reference MR image are mapped to specific correction values,where the mapping is determined

by classification of the reference MR intensities into most likely tissue types and then assign-

ing known correction values to each tissue class. Adapting this NM-MR atlas for MRI-guided

attenuation correction, the reference MR image is registered with the MR image of the patient

and the obtained transformation is then applied to the correction data set. Although the evaluated

method is quite similar to the method protected by the patent[32] with the correction data set

consisting of proper CT numbers, the evaluated method decisively discriminates itself by means

of the determination of the transformation that aligns the transmission component of the atlas

with the emission data. Whereas this transformation is determined adapting an NM-MR atlas

and MR-MR registration in case of the claimed method, it is determined by direct registration

of the transmission atlas with the MR image of the patient in case of the evaluated method.

Therefore, the reference MR image is no longer needed and a usual transmission atlas remains.

There was also a patent application submitted by Pichler et al. [43] regarding their most

recently published MRI-guided method for scatter and attenuation correction introduced in the

outlook. Unless this method applies MRI-guided atlas registration and a prediction of a pseudo

CT of the patient as well, it predicts the pseudo CT more sophisticated adapting also pattern

recognition methods compared to a usual atlas registrationas applied in case of the evaluated

method. In particular, the perspective is turned on a point of view that centers on finding a map-

ping between MR intensities and real-valued CT numbers usingpattern recognition techniques

such as Support Vector Machines to solve the regression problem. Thereby, the atlas registration

with the MR image of the patient is adapted to gain some kind ofprior knowledge that can be

considered while building the training data set for determining such a mapping.
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