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Overview

This work evaluates an MRI-guided approach to compensated?l SPECT emission data
for photon attenuation that utilizes a CT atlas and thus doesequire an additional transmission
scan. The introductory chapter starts with a general dasmni of imaging in nuclear medicine,
in particular molecular imaging and the desired combimatibtwo tomographic modalities that
gain functional and morphological information in one segrocedure. A perspective on the
future of dual-modality imaging in nuclear medicine follgygiving the motivation for the work
at hand. Hereafter, the basics of the emission tomograptaging modalities and the degrading
physical phenomena which necessitate scatter and atiemgatrection are presented. It is also
drawn how these corrections are incorporated in the praféssge reconstruction. Several de-
veloped strategies of prior art to derive the attenuatiop osed for both scatter and attenuation
correction are delineated. The description of the evatlapproach and its mathematical model
follows, where the consecutive steps are considered onady Afterwards, the materials and
methods adopted for the evaluation and the results with cheabevaluation settings recorded
are pictured. An outlook regarding the presented MRI-gui®goroach and a brief summary of
the entire thesis completes this work, while a review of piteelated to the approach can be
found in the appendix.
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Abstract

As the development of new imaging systems that combine PETMRI is currently in
progress, novel ideas to compensate the captured emisstiarialt photon scatter and attenua-
tion are being sought. A favored approach would utilize treephological information gained
from the precisely co-registered MR image to derive a paspecific non-uniform attenuation
map for accurate scatter and attenuation correction. SMRIeguided approach was evaluated
throughout this study. A pseudo CT of the patient is obtainedferring CT numbers from a
CT atlas using automatic non-parametric registration withiual information as distance mea-
sure and regularized by curvature. The obtained pseudo Qiefsused to apply conventional
methods to derive the patient-specific attenuation map &@m image. An initial evaluation of
the approach is given, where the optimal stiffness of thengid transformation is determined
and the mean differences of pseudo CTs generated from dhiffatias CTs are recorded.

Abstract

Da die Entwicklung neuer bildgebender Systeme, die PET niRl Mereinen, derzeit
voranschreitet, sind neue ldeen gefragt, um Hsgé von Photonenstreuung und -absitivang
in den aufgenommenen Emissionsdaten auszugleichen. &iimgehter Ansatz iwrde sich der
morphologischen Information desgaise co-registrierten MR Bildes bedienen und daraus eine
Patienten spezifische, nicht uniforme Abséuwlvungskarte Ur exakte Streuungs- und
Abschwachungskorrektur ableiten. Solch ein MRI-basierter Ansatede in dieser Arbeit aus-
gewertet. Hierbei wird ein Pseudo CT des Patienten durchikiah von CT Werten aus einem
CT Atlas unter Verwendung automatischer, nicht-paranuttes Registrierung mit Transinfor-
mation als Distanzmald und Regularisierung basierend aukdenmung des Deformations-
feldes generiert. Das erhaltene Pseudo CT wird dann durctageldiche CT Bild basierte
Methoden in eine Abschachungskartébergeiihrt. Eine amiingliche Auswertung des Ansatzes
wurde durchgefhrt, wobei die optimale Steifigkeit der nicht starren Tfansation ermittelt
wurde und die mittlere Abweichung der erhaltenen Pseudo @figetegt ist.



Contents

1 Imaging in Nuclear Medicine

1.1
1.2
1.3

2.1
2.2
2.3

2.4

3.1

3.2

3.3

3.4

Molecularimaging . . . . . . . . . ..
Dual-modality Imaging . . . . . . . .. ... ...
The Future in Dual-modality Imaging . . . . .. ... ........

Emission Tomography
Single Photon Emission Computed Tomography . . . . . ... ...
Positron Emission Tomography . . . . . . . . . ... .. .. ... ..
Photon Attenuation . . . . . . . . .. ... .
2.3.1 Interactions of Radiation with Matter . . . . ... ... ...

2.3.2 Linear and Mass Attenuation Coefficient

Reconstruction . . . . . . . . . ...

Attenuation Correction Methods
Calculated Methods . . . . . . . . .. ... .. ... .. ... ...,
3.1.1 Uniform Fit-ellipse Method . . . . ... .. ... ......

3.1.2 Automated Contour Detection Methods . . . . ... .. ... ...
Transmission Methods . . . . .. .. ... .. ... .........
3.2.1 Radionuclide TransmissionImaging . . . . . . . . . . . .. . ... .
3.2.2 X-ray TransmissionImaging . . . . . ... ... ... ....
AtlasMethods . . . . . . . . . . ...
3.3.1 Inferring-attenuation Distributions Method . . . . .. .. ..

3.3.2 Transmission Atlas-guided Method

Magnetic Resonance ImagingMethods . . . . . .. .. ... .. ..
3.4.1 Segmented Magnetic Resonance Imaging Method . . . . ........ .

3.4.2 Nuclear-medical Magnetic Resonance Atlas Method

vii



viii

A

CONTENTS
Computed Tomography Prediction Method 39
4.1 OVEIVIEW . . . . o e e e e e
4.2 Computed Tomography Prediction . . . . . .. ... .. ... ... ... 41
4.2.1 X-ray TransmissionAtlas . . . . . .. ... .. ... .. .. ..., 41
4.2.2 Deformable Registration . . . . . . . ... ... 42
4.3 Attenuation Map Generation . . . . . . . . . . .. ... e 48
4.4 RecOoNnStruction . . . . . . . . . . 50
Evaluation 53
5.1 Materialsand Methods . . . . . . . ... e 54
52 Results. . . . . . . e
Outlook 69
Summary 71
Related Patents 7
List of Figures 79
List of Tables 81
List of Abbreviations 83
85

Bibliography

60



Chapter 1
Imaging in Nuclear Medicine

In 1917, Johann Radon, an Austrian mathematician who laté®#b became full professor
in Erlangen, invented the Radon transform. However, Radatgsnal paper was virtually un-
known by researchers in applied areas prior to the early 49@he of the investigators who
independently discovered much of Radon’s work was Allan M@k, a physicist from Tufts
University. Nevertheless, Cormack pointed out in 1973 thatdR& work was fundamental to
the problem of reconstruction from projections. The firgnpoted tomographic pictures were
obtained 1970 by Godfrey N. Hounsfield. He and Allan M. Cormemske honored for their
pioneer work with the Nobel Prize in physiology or medicinelB79 [10].

To date, medical imaging modalities have attained widespuodinical acceptance as a stan-
dard of care for patients with known or suspected disease= cbimcept of predictive health
promotes the goal of using techniques such as molecularmgag nuclear medicine to detect
and treat disease even before it has ever been expressed.

This introductory chapter explains the principles of malac imaging. Afterwards, latest
imaging devices used in nuclear medicine that combine t#ferdnt modalities into a single
machine are considered. These dual-modality scannersiaenty the prior art to obtain func-
tional and morphological information in one single proceduA perspective on the future of
dual-modality imaging is taken in the last section, givihg tnotivation for the work at hand.
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1.1 Molecular Imaging

Functional imaging, as opposed to structural imaging,ersrn revealing physiological activ-
ities within a certain tissue or organ. In molecular imagingedical imaging modalities are
employed that use tracers of metabolic processes to untoeierspatial distribution within the

body. Tomographic modalities employed in nuclear medieree emission computed tomog-
raphy (ECT) imaging modalities, particularly Single Photemission Computed Tomography
(SPECT) and Positron Emission Tomography (PET). In priegifiieir difference are the used
tracers, single-photon emitters in SPECT and positrontersiin PET.

Tracers are radioactive isotopes having similar biochahand biological characteristics as
their compounds within the body. These tracers are alsectaddiopharmaceuticals or radioac-
tive labeled pharmaceuticals and have a short half-lifee Siort half-lives of the tracers ensure
that the subject and the people handling them receive onbyvarddiation dose. A too long
half-life furthermore would require a longer acquisitiome to get reliable statistics. According
to Burger and von Schulthess [6], radioactive isotopes acelknt physiologic spies to image
human functional processes bound into biomolecules. Irdealisituation the corresponding
non-radioactive elements occur normally in biomatter s & perfect spy can be synthesized.
This synthetic spy is moreover not recognized as foreigrhibynuman body. Other properties
are that the images obtained by nuclear medicine contdiadignal not coming from the radio-
pharmaceutical and that even minute quantities of radiaaepies can be detected due to the
high sensitivity for detection of radioactivity.

The obtained emission data is interpreted visually andialyaed either semiquantitatively
or quantitatively, where the extraction of quantitativeoimation requires an appropriate math-
ematical model of the physiologic process to be quantifietle fleason for this is that ECT
measures counts only but cannot deduce in vivo to which mtdespecies the radioisotope is
bound. PET imaging, in particular, which provides quatititadata relatively easily and at high
enough temporal resolution, has seen extensive and siepkest quantification. Input sampling
of arterial or arterialized venous blood is standard evesome clinical PET studies and curve fit-
ting using compartment modeling to derive data on perfydftod volume, oxygen extraction,
and metabolite and receptor-ligand kinetics is widely Uséd

Besides the functional information, anatomically appraggriinformation is frequently ob-
tained in bone, lung, kidney, thyroid and heart studies|evhibrain studies and studies for tumor
detection the anatomic information may be insufficient fa}sion of functional and anatomical
information obtained by structural imaging modalitiestsas CT and MRI is required.
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1.2 Dual-modality Imaging

Different imaging modalities visualize different aspeotglisease in a non-invasive way. Both
CT and MRI are used primarily for imaging anatomical changdser&as molecular imaging
techniques of PET and SPECT, as introduced in the last secapture functional or metabolic
changes. Each of these two types of change delivers impgont@mnmation, however, only the

combination of both, anatomical as well as functional infation, may clarify the nature of an
abnormality and help diagnose or stage the underlying skssea

Townsend and Cherry [55] described the prior art dual-mbdedchnologies in 2001. At the
time it was a novel approach to combine PET or SPECT with CT, edseto date it is almost
ordinary to have a SPECT-CT or PET-CT scanner in a clinical enment. Many of the ad-
vantages of dual-modality imaging systems besides sot@pproaches for image fusion have
been mentioned by Townsend and Cherry. One of the most obvenedits of a combined scan-
ner is the more accurate superposition of functional antbamaal data even in regions where
fusion software hardly reveals satisfactory results. Emigbles a reliable localization of radio-
pharmaceutical uptake or guides surgery in areas wherestitectures neighbor disease or in
anatomically complex regions. Furthermore, the abilityatguire functional and morphologi-
cal images in a single procedure increases patient thraugivpich is a relevant issue in a busy
clinical environment. Another opportunity offered by dumabdality scanners that combine func-
tional and anatomical imaging modalities is the use of thepmological information for sake
of precise attenuation correction (AC) of the emission data.hybrid systems combining ECT
and CT CT-based correction of the gained emission data is aoshefithoice.

Although the combination of ECT and CT has already attainedsgpdead use and unless
its advantages mentioned before, it has many limitatidssnhjor drawback is that the imaging
is performed sequentially rather than simultaneously.sTiiroduces potential misregistration
due to improper patient positioning, respiratory motion ather voluntary patient movement.
Lately, Goetze et al. [17] quantitatively assessed thecefé misregistration in myocardial
perfusion SPECT-CT. The authors determined that misregj@traf SPECT and CT occurs
frequently in myocardial perfusion SPECT-CT and that it dbates significantly to changes in
radiotracer distribution in the anterior, septal and ildlesegments. The basic statement of these
results can be carried over to general SPECT-CT and PET-CT &swislre misregistration
causes artifacts in the attenuation corrected images. dMereCT is good at looking at the
bones, whereas it governs less soft-tissue contrast withewse of contrast agents. A further
important drawback of these hybrid systems is the additi@thation dose.
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1.3 The Future in Dual-modality Imaging

MRI generates high resolution anatomical images offerirttebsoft-tissue contrast and a large
variety of tissue contrasts compared to CT. Additionally, MBé&s not use any ionizing radiation
and therefore can be used without restrictions in serialissufor pediatric cases and in many
other situations where radiation exposure is a concern M/Hile the combination of PET and
CT has already been realized in clinical scanners, the catibmof PET and MRI is more
challenging since conventional PET detectors incorpguatdomultiplier tubes (PMTs) which
are extremely sensitive to magnetic fields. Moreover, itifcdlt to develop PET detector
modules that do not cause any serious distortions or adifadhe MR images. This can only
be achieved if the use of any conducting or ferromagnetiernas is avoided to maintain the
homogeneity of the main magnetic field and to minimize etenagnetic interference (EMI)
between PET and MRI signals [51].

The first prototype PET detectors which are compatible witRIMystems, as the early
single-slice prototype PET system developed by Shao €b3].and the more recently by Mack-
ewn et al. [34] developed PET scanner for imaging small alsincaupled lutetium oxyorthosil-
icate (LSO) scintillator elements placed inside the magm&MTs and electronics placed out-
side the fringe of the magnetic field by 3 to 5 m long optical fheAccording to the remarks
of Catana et al. [8], major limitations of this approach are significant loss of scintillation
light via the optical fibers, degrading crystal identificati energy resolution and timing reso-
lution and that a large number of crystals is necessary teaelboth high spatial resolution
and sensitivity. Because of limited space inside conveatiddR magnets, it is not practical
to fiber-optically couple large numbers of crystals to exé¢electronics. Hence, a second ma-
jor approach emerged where the PMTs are replaced by avaahciiodiodes (APDs) which are
coupled directly to the back of the scintillators. FortaigtAPDs are relatively immune to mag-
netic fields and have been demonstrated to work inside MRnetarat fields as high as 9.4 T.
This approach solves the many limitations of fiber-opticalbupled systems but also has the
largest potential for EMI between the radio frequency aratigmt coils and the PET electron-
ics. Therefore, first attempts using APDs instead of PMT<diat a combination of both major
approaches by coupling the APDs via short lenghts of opfibals to arrays of LSO crystals.
Initial results obtained by Catana et al. [8] with such a mslite PET-MR scanner showed no
visible artifacts using standard pulse sequences. Morgdudenhofer et al. [23] just recently
developed a multi-slice three-dimensional animal PET seawhere the APDs are coupled di-
rectly to the back of the scintillators and therefore it ebbé built completely into a 7 T MRI.
Already previously, Schlemmer et al. [50] presented thé fissnan brain images with a similar



1.3. THE FUTURE IN DUAL-MODALITY IMAGING 5

multi-slice PET-MRI system. The authors reported that théopmance of neither the PET nor
the MR scanner was degraded by synchronous data acquiaittbthat the PET and MRI data
revealed image qualities comparable to stand-alone sgstattmout any significant distortions or
artifacts. Particularly, the integrated PET detector vmassible for the MRI system maintaining
a good signal-to-noise ratio (SNR) and spectral resolutidvi® spectroscopy (MRS).

Besides the difficulties to combine PET and MR, it providesesaivmore potential advan-
tages compared to PET-CT as only the high soft-tissue cardrakelimination of additional
ionizing radiation. Simultaneous imaging of function andrphology becomes possible, thus,
greatly reducing the amount of misregistration if not eviami@ating it. The accurate registra-
tion furthermore permits precise anatomically based regidnterest definition and may allow
partial volume correction for PET data. In addition, thishteology could be used to directly
compare functional MRI (fMRI) studies with PET blood flow stesliand to temporally corre-
late MRS and PET information in the study of complex metabpimcesses and is capable of
assessing flow, diffusion, perfusion and cardiac motiomi@ single examination [51, 67]. Zaidi
stated in the point/counterpoint discussion if PET-MRI wéplace PET-CT as the molecular
multi-modality imaging platform of choice in [67], that PEMRI will likely succeed in unifying
the four promising molecular imaging techniques PET, MRIRIMind MRS, which be in sharp
contrast to the limited information provided by dual-mogaPET-CT.

However, in comparison to CT, MRI produces anatomical images fwhich it is more
difficult to derive attenuation maps for correction of theigsion data. In an only recently
published article [65] again Zaidi stated if MRI-guided atiation correction is a viable option
for dual-modality PET-MR imaging. In this article he summad the few studies that have
addressed this issue so far and concluded that the reseiklannconvincing and more research
is needed. Nevertheless, the feasibility of some appraalchs yet been demonstrated and the
motivation for the work at hand as well was to evaluate thaifelity of another MRI-guided
attenuation correction strategy for PET-MR scanners.
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Chapter 2
Emission Tomography

In transmission tomography a gamma source is placed outstddeuman body and the attenu-
ation of photons traveling through the body is pictured. @yt in emission tomography the
subject has been injected with, has ingested or has inhaketi@active tracer that radiates pho-
tons. Detectors then collect the endogeneous photons fraside the body. The measured
radiation is directly related to a physiological metahwlisf the examined subject. The kind of
physiological function that is imaged is determined by thdenmistered radioactive tracer. An
isotope compound of glucose, for instance, can be used ntifigl@areas of cancerous involve-
ment and to distinguish malignant from benign lesions. drdifiore plays an important role in
the diagnosis and management of patients with cancer.

This chapter gives at first a description of the commonly USET modalities in nuclear
medicine. Afterwards, the effect of photon attenuation nmission tomography is treated in
detail. Which algorithms are used to reconstruct the emrmssiages is considered towards the
end of this chapter. The attention there is turned on the eosgttion for photon attenuation.
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2.1 Single Photon Emission Computed Tomography

Single Photon Emission Computed Tomography is the diregrpssion of planar scintigraphy.
While planar scintigraphy is comparable with radiograpiyEET can be compared with CT.
A gamma camera invented by Hal O. Anger [2] in 1957 and theee&dso known as Anger
camera is used to capture the photons emitted by the tracer.

The gamma camera consists of a mechanical collimator, &lstion crystal, an array of
PMTs and a processing unitincluding a discrimination umgidparate scattered from unscattered
photons. The schematic representation of the gamma casshmivn in Figure 2.1. Photons
emitted by the radiopharmaceutical are detected as describthe following. The collimator
ensures that each photon impinging on the detector has aleftied direction such that the cor-
responding projection line can be determined. This is rezggdor tomographic reconstruction
of the emission image. A photon that enters the scintilleti@racts with the crystal atoms until it
has lost all its energy, whereby the atoms are raised to atedxstate. The excited atoms return
to the ground state by emitting visible-light photons thet traverse the scintillation crystal un-
resisted. These light photons reach the light-sensitiviase of the neighboring PMTs causing a
photoelectric effect and so releasing electrons. Thesmaltgplied by a cascade of stages in the
PMTs and the generated currents are further amplified. Theifeed currents are proportional
to the number of light photons that hit the corresponding PNBEnce, the overall current is pro-
portional to the total number of scintillation photons ahdrefore proportional to the energy of
the impinged photon. Moreover, the PMTs get an amount of ligdit depends on their relative
position to the scintillation event, which enables the dixeg of the location where the photon
has impinged on the crystal. The discrimination unit takesdverall current proportional to
the photon energy and compares it to the expected currerdspanding to the energy of the
photons emitted by the radionuclide used. Scattered phdtawve lost part of their energy and
thus can be discarded by the discrimination unit. Howevemyrof the processes involved in
detection underly statistical variations and the estichatgergy therefore also shows a Gaussian
distribution around the true value, known as the photop&ale broader the peak, the worse is
the energy resolution of the gamma camera. Scattered phtstanare still under the photopeak
cannot be distinguished from primary, unscattered photdohe range of energy that is accepted
by the discrimination unit is called the photopeak windoack accepted event in the photopeak
window increments the counter of the corresponding pixéhéimage matrix [6, 13].
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nuclide || half-life E, (keV)
®mTe 6h 140
123 13 h 159
201T] 3.1d 80 + 167
5Ga 3.2d| 92+ 185+ 296
1N 2.8d 173 + 247

Table 2.1: Properties of commonly used radionuclides inGPE

tracer organ | diagnostic question
9Tc-Phosphate bone | tumor
9Tc-Phosphate®'Th-Chloride || heart | septal defects, stroke volume
99Tc-Pertechnetate thyroid | tumor, hyperfunction
9Tc-Macroalbumine lungs | ventilation

Table 2.2: Commonly used tracers in SPECT and their fields dicabion

Instead of acquiring just a single planar projection of thatil distribution of radioactivity,
as itis the case in planar scintigraphy, multiple projeetiare drawn from different angles about
the patient, where several slices are acquired simultatgolhe projections obtained are then
reconstructed in the same manner as it is done in CT. Thereaareally two solutions to obtain
the required projections. So called multi-detector systeonsist of a closed ring or polygon of
detectors into which the body section of interest is pladeddate, these systems are dedicated
to brain studies and not in widespread use. The favoredisolig a gantry with one or more
movable heads as illustrated in Figure 2.2 [6]. An importaottillustrated configuration is the
triple-head SPECT system, where one of the gamma camerasdstascquire transmission
data from an opposite radionuclide source additionalljéoamission data if radionuclide trans-
mission imaging is applied to obtain the attenuation mapic& property of a dual-head SPECT
system is that it can easily be upgraded to a relatively cli&p system by just attaching a
coincidence detection circuit, resulting in a combined GIPHPET system [13].

For the SPECT radionuclides, photon energy is ideally in #mge of 100 to 200 keV. Be-
low 100 keV tissue absorption and scatter become signifieemtreas above 200 keV there is
low detection efficiency. Typical radionuclides used in 8FEand their properties are listed in
Table 2.1 [15], whereas Table 2.2 lists common tracers agidfields of application [13].
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Figure 2.2: SPECT systems
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2.2 Positron Emission Tomography

Tracers in Positron Emission Tomography are positron emittTypical radionuclides used and
their properties are listed in Table 2.3 [40, 49]. On decasoom turns into a positron, a neutron
and a neutrino [40]:

p—e +n+uv.

The range of the emitted positrons lies within few millinrsteWithin this range the positrons
are slowed down due to interactions with neighboring atonasfaally each annihilates with an
electron. The result of the annihilation are two photongaiiag in opposite direction [40]:

et +e —2y.

Due to the law of the conservation of energy and momentum ettexgy of each photon is
511 keV. The annihilation photons are detected by a ring téaers enclosing the patient body
in a 360 circle. Mainly due to statistical components in the detecand processing time, both
single events may have a time delay. Thus, single eventsaitbatetected within a coincidence
time window of usually 10 to 20 ns are considered as simuttasend belonging to a single
positron annihilation. According to Newiger [40] a typidathe window for coincidence detec-
tion is about 12 ns long. Each recorded coincidence incsetlgecount of the projection ray
corresponding to the so called line of response (LOR) comygtite opposing detectors which
registered the two single events. Not only true coinciderimé also random or scattered co-
incidences are erroneously recorded. Thus, the acquimgeqgbion data has to be corrected for
these effects. The positron decay and annihilation as wel@ detection of the coincidence is
illustrated in Figure 2.3 [40, 6, 13].

Besides some alternative PET system designs as describ&f mylti-ring PET scanners
are commonly used. These scanners have several adjaceatodetings that are housed in a
gantry and can operate either in 2D or 3D mode. Each of thage donsists of so called block
detectors, each in turn consisting of an array of, for instarour by eight crystals with four
PMTs. The detector rings acquire projections in many divestsimultaneously. A system op-
erating in 2D mode, in principle, images transaxial planethe investigated part of the body
independently. Therefore, the rings are separated by teimgepta. An important aspect of PET
scanners is that no further mechanical collimation takaseylsince the detection of only coinci-
dence events performs even an electronic collimation. Ay of electronic collimation and
simultaneous acquisition of projections is the acquisibbsufficient statistics with less activity.
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nuclide || half-life | max. Es+ | averagel/;+ | max. range| average range
(min) (MeV) (MeV) (mm) (mm)
11c 20.4 0.96 0.385 5.0 0.3
13N 9.9 1.19 0.491 5.4 0.4
150 2.9 1.72 0.735 8.2 15
18 110.0 0.64 0.242 2.4 0.2

Table 2.3: Properties of commonly used radionuclides in PET

tracer measurement of fields of application

11C-Acetate fatty acid metabolism | cardiology

11C-Methionine|| amino acid metabolism oncology

13N-NH; perfusion cardiology

H,°0 perfusion cardiology, neurology

BE-FDG glucose metabolism | cardiology, neurology, oncology

Table 2.4: Commonly used tracers in PET and their fields ofiegjobn

In 3D mode the septa are removed to exploit as much informatsgossible. However, also the
detection of scattered coincidences increases signiljc&igure 2.4 illustrates the difference in
LORs of a multi-ring PET scanner operating in 2D or 3D mode [6].

According to [6] there are two fundamental processes thait khe resolution obtainable
with PET: the range of the positrons between emission anthigation and the deviation from
exact collinearity of the two emitted annihilation photoiitie average range of commonly used
positrons can be taken from Table 2.3 and is dependent oninbédenergy of the positrons.
Since the positrons are still moving when they meet an alectihe angle between the two
emitted photons is not exactly 18But show an almost Gaussian distribution with a full width
at half maximum of about 0°5 A deviation from 180 causes the annihilation to be located
on a wrong line. Hence, the fundamental resolution limithewt 3 mm, whereas current PET
scanners achieve a resolution of 4 to 6 mm at the center ofdttedf view (FOV). Moreover,
the resolution increases with less recorded events simchitfin frequencies have to be cut off
during reconstruction [13].

Typical clinical applications of PET show up in cardiologygurology and especially oncol-
ogy, where, for example, tumor growth and metabolism canittened quantitatively to guide
patient treatment and to monitor the success of a therajje P4 lists tracers commonly used
in PET and their fields of application [40].
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Figure 2.4: LORs of a multi-ring PET scanner in 2D and 3D modes
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2.3 Photon Attenuation

A radiopharmaceutical used for radionuclide imaging gedsiuted in the body, emitting pho-
tons at one or more energies. Starting from the point of iteegaion, a photon travels along
a straight line until it interacts with matter. In the dediase this happens within the detector
outside the body and results in an event that is recorded.eienyif the photon interacts with
body matter on its way to the detector, it is absorbed or deftefrom its original direction [6].
Both absorption and scattering are the components of the@erecess of photon attenuation.

2.3.1 Interactions of Radiation with Matter

At the photon energies below 1000 keV encountered in nuchedticine the major interactions
in body tissues are photoelectric absorption and Comptattesicey. Photoelectric absorption
dominates over scattering for photons of low energy andelabsorbers. The total attenuation
is dominated by the photoelectric effect below photon elesrgf 30 keV and 50 keV for soft
tissue and bone and is dominated by Compton scattering faophenergies between 200 to
1000 keV [28].

Photoelectric Effect In the photoelectric effect, illustrated in Figure 2.5, theident photon
transfers all its energy to an orbital electron of the absodtom. This photoelectron is ejected
from the atom with a kinetic energyi;, equal to the photon enerdy, reduced by the electrons’
binding energyF,:

Eun = E, — By . (2.1)

The photoelectron looses its energy by ionization and attort in the absorber, which enables
the detection of the photon in the detector as describedtirose2.1. The photoelectric effect oc-
curs primarily for low-energy photons and decreases shaviph increasing photon energy and
very rapidly with decreasing atomic numbgrof the absorber atom. Roughly, it is proportional
to Z° /E;”. Moreover, it occurs primarily with the K-shell electrongith about 20% contribu-
tion from the L-shell electrons and even less from highetlsh& here are sharp increases in
photoelectric effects at energies exactly equal to bindimgrgies of the shell electrons [49].
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Compton Scattering In Compton scattering, illustrated in Figure 2.6, the phostiikes a
loosely bound electron of an absorber atom of body tissugrandfers a part of its enerdy, to

it. The Compton electron is ejected from the absorber atormaamdcause ionization or excita-
tion as in the photoelectric effect. The photon itself is eletftd from its original direction at the
angled, continuing with less energ.... It may undergo subsequent interactions in the absorber
or may escape without further interaction. Using the lawhef ¢onservation of momentum and
energy, the scattered photon energy is given by [49]:

£y (2.2)

E, =
T 1+ (B, /mec®)(1 —cosB)’

wherem, is the rest mass of an electron anig the light speed. Thus, the produgtc? is equal
to 511 keV, the rest energy of an electron. Moreover, thetkirenergyF;, of the Compton
electron is given by:

Fin = E, — E — By | (2.3)

whereF, is the binding energy of the Compton electron. Compton scagfés directly propor-
tional to the atomic number and has a slight non-linear inverse dependence on photogyene
between 10 and 1000 keV. At low photon energies, forward auttWward scattering is equally
likely, but at higher energies, scattering in forward dit@t dominates more [49, 28, 6].

2.3.2 Linear and Mass Attenuation Coefficient

The intensity of transmitted photons through an absorberbeaexpressed mathematically by
the exponential equation [62]:

I =1, exp [—/Lu(m)dl] , (2.4)

where, is the intensity of incident photons amld is a differential of the thickness of matter
encountered as the beam of photons passes through the exbalarg pathl.. The functionu

is the spatial distribution of the linear attenuation ca#fiits. The attenuation coefficientat

a specific spatial locatiom represents the probability that a photon will undergo aeratttion
while passing through a unit thickness of matter. It is tfeeea measure of the fraction of
primary photons that interact with the absorber and is esg@e in crit [6, 62].
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The linear attenuation coefficientis dependent on the photon energy and proportional to the
density of the absorber. To compare the attenuation ofrdifitematerials, the linear attenuation
coefficient of a material is divided by its densjtyo form the mass attenuation coefficient in
cn?/g, which then depends only on the photon energy [6]:

o = r (2.5)
p

From [62] it can be concluded that bone suffers more attému#lhan lung tissue and that the
photons appearing in SPECT are more attenuated than thelatiaihphotons occurring in PET.

In the case considered above, the intensity of transmittetbms excludes scattered photons
that are erroneously recorded as events. This is calleddbd geometry condition and the
linear attenuation coefficients in this case are referred toarrow-beam attenuation coefficients.
Otherwise, if scattered photons are included, they araregfeo as broad-beam attenuation
coefficients. The build-up factor originating from the bdelaeam condition is defined as the ratio
of the total transmitted photons divided by the ideal narb@am measurement corresponding
to unscattered photons in the transmitted beam. Thus, tteelgufactor on the good geometry
condition is equal to one, but greater than one on the breadabcondition [70].

The exponential equation for the broad-beam conditionvisrgby:

—/L/L(:n)dl] , (2.6)

where B is the build-up factor caused by scattered photons. Zaidl.ef70] summarized the
fundamental relationship of scatter to attenuation. Adiray to them, a photoelectric absorp-
tion contributes only to attenuation, but Compton scatterdases attenuation and also sets up
a potential scatter corruption. Attenuation and scattee lapposite effects on activity quan-

I =1yB exp

tification in the sense that photon attenuation decreasgsgothus allowing too few photons
to be detected, resulting in underestimation of activitycéntrast, scatter corruption increases
counts, thus allowing too many photons to be detected, treguh overestimation of activity.
Both uncorrected attenuation and uncorrected scattermoyrucause significant loss of contrast
between neighboring structures and bias in activity qtiaation.
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Figure 2.5: Photoelectric effect

Figure 2.6: Compton scattering
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2.4 Reconstruction

Once the emission data has been collected, a reconstradtorithm is applied to get the to-
mographic images of the spatial distribution of radioattivThe mathematical foundation of
reconstruction in computerized tomographic imaging isebdas the Radon transform [10]:

p(0.1) = / L . 2.7)

where a two-dimensional parallel geometry is considerdte garametef represents the pro-
jection anglet the transverse position arfdhe radionuclide source distribution. The projection
line L is given by:

x cos O+y sin §=t. (2.8)

Fourier methods on the basis of the Fourier Slice theoremehgfiltered backprojection (FBP)
[24, Chapter 3], and algebraic reconstruction algorithn®g Rhapter 7] have been used for
decades to solve the reconstruction from projections prabl

The above equation (2.7) holds in emission tomography drthei attenuating properties of
the object can be omitted. This is hardly true in the case afdrusubjects. Not minding the
attenuation of photons leads to serious artifacts in thengicucted images. These artifacts make
it difficult or even impossible to read the images and to makadiable diagnose. Particularly, if
guantitative analysis of the physiologic processes igeéscompensation for photon attenuation
is mandatory. Bai et al. [3] investigated the effects of attgion on tumor detection in whole-
body PET imaging and strongly recommended the applicafiatt@nuation correction strategies
to avoid missing regions of elevated tracer uptake. Morea® another example to note its
importance, professional societies recommended attemuadrrection for myocardial perfusion
SPECT in a joint position statement [19]. Figure 2.7 illustsathe reconstruction artifacts if the
emission projections are reconstructed without atteaoatorrection.

Therefore, the spatial distribution of linear attenuatoefficients has to be incorporated into
equation (2.7). The amount of attenuated photons in SPEC@&ndispon the tissue pathlength
that the photon encounters as it travels between the pogrmafsion and the point of detection,
whereas in PET the annihilation photons traverse a totalidighickness that is equal to the
body thickness intersected by the LOR. Accordingly, the paih equations (2.4) and (2.6),
respectively, is the path from the point of emission to thanpof detection in SPECT but the
whole LOR in PET. Attention has therefore to be paid to théed#ince in paths resulting in
slightly different formulas for SPECT and PET [62].
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The general equation describing measured projectionsinstef the radionuclide source
distribution inside an attenuating medium is given in theecaf SPECT by:

pspect(6,t) = /

L(0,t)

d(z,y)
f(z,y) exp [—/0 u(x',y')dl’] dl , (2.9)

whered is the distance from the emission point in the object to thteater along the projec-
tion line andy is the spatial distribution of narrow-beam attenuationficdents. Whereas the
attenuated Radon transform in PET is given by:

pre0.0) = [ EECTLET {— / e y)dz} | (2.10)

Nevertheless, as the amount of attenuation is independ#m point of emission along the
LOR, the captured sinograms in PET can exactly be correctedtfenuation by simple pre-
multiplication with attenuation correction factors (ACFH)tained by transmission imaging as
described in section 3.2.1 or calculated from a patientiipeattenuation map, provided such
a u-map is available. The ACFs are defined as the exponentialeofirie integrals of linear
attenuation coefficients along each LOR [70]:

ACF(0,1) = exp [ /L u(m,y)dl] | (2.11)

(0,%)

The corrected projections are obtained as noted above Ipfespre-multiplication [70]:

pPET,AC(eyt) = ACF(Q, t) X ppET(H,t) = / f(a:, y)dl . (212)
L(6,t)

However, attenuation correction is more complicated amdady be an approximation in
SPECT, because the attenuation factors cannot be sepa@tetht unattenuated Radon trans-
form. Apart from that it should be noted that the magnitudéhef ACFs required in PET is far
greater than in SPECT [62]. In addition, correction for esegegnerated by scattered photons
and random coincidences in PET have been neglected so famdgtying any scatter correc-
tion in conjunction with attenuation correction result®irerestimation while compensating for
attenuation alone. Thus, the build-up factor caused byesdaas to be estimated and compen-
sated for. This is done in PET prior to the attenuation coiwacas described above. In [68],
Zaidi and Montandon only recently gave an exhaustive oeenaf scatter correction techniques
commonly applied in PET.
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(&) AC PET image (b) Non-AC PET image

Figure 2.7: Reconstructed PET image with and without comgtersfor photon attenuation

King et al. [26] reported increased artifacts when the gpegisolution in the attenuation map
was either significantly better or worse than the resolutibthe emission data being corrected.
Thus, if the attenuation map has higher spatial resoluiddjtional smoothing can be used to
reduce noise and to match the resolution to that of the eomssiage.

Although FBP has been the most common technique for imagesacation in CT and also
ECT for many years, it can in general only be an approximatbahé inverse attenuated Radon
transform with non-uniform attenuation [62]. This and tltvantages of iterative reconstruc-
tion algorithms mentioned below, which also enable comaems for scatter and attenuation in
SPECT, led to increasingly use of iterative algorithms,ipaldrly the maximum likelihood ex-
pectation maximization (ML-EM) algorithms first introdwtby Rockmore and Macovski [48].
A practical implementation of the EM method was introduae®ET by Shepp and Vardi [52].
Kontaxakis and Strauss [30] published a conspicuous sufvagplied maximum likelihood al-
gorithms. The authors list many of the important modificagithat had to be made to overcome
the disadvantages of conventional EM which allowed thi®mstruction technique to become
more and more popular. Although, the EM algorithm yields ars approximation to the exact
solution, physical and statistical factors can be includetie transition matrix [30, Eq. 3] such
that better results can be achieved as with FBP, particula®PECT. Some of these factors are
scatter and attenuation correction and the Poisson ndttire emission process for both SPECT
and PET and random coincidence correction in PET only. THered subsets expectation max-
imization (OS-EM) algorithm invented by Hudson and Lark22] creates a new image estimate
at a fraction of the time required by the conventional EM.ds lgiven ML-EM algorithms their
break in clinical practice.



Chapter 3
Attenuation Correction Methods

In section 2.3, the physical phenomena of photon scattenpattenuation in emission tomo-
graphic imaging were illustrated. Photon attenuation Ieeted to be one of the most important
causes for image degradation resulting in images in whigdhbress or counts are not neces-
sarily linear with tracer uptake, thus complicating visinrpretation and quantitative analysis.
Reliable correction methods for quantitative emission tgraphy require accurate delineation
of the body contour and often necessitate knowledge ofriatematomic structure especially in
inhomogeneous body regions such as the chest [62]. Therefmse methods try to determine
the attenuation map representing the spatial distribudfdimear attenuation coefficients.

Zaidi and Hasegawa [62] classified existing attenuatiomeotion methods into two broad
classes: transmissionless and transmission-based atitamgorrection techniques. Since that,
some research groups have been working on new transmisssagpproaches. Therefore, a more
subtle classification was motivated which led to the undeglgtructure of this section, to some
extent further driven by the more recently by Zaidi et al.][@0blished review of strategies for
attenuation compensation in neurological PET studies.

Calculated methods which try to determine a uniform atteooanap from the emission
data alone are considered at first. Then the to date most calmrased measured methods
that require an additional transmission scan, includieg@f scan acquired on a dual-modality
imaging system, are highlighted, followed by more receptlgluated atlas-based approaches.
Methods that make use of a co-registered MR image of thematiedetermine the patient-
specific attenuation map are considered at last. Few sthdws addressed this approach for
attenuation correction so far. Particularly against thekgeound of simultaneous PET-MR imag-
ing, MRI-guided approaches will become highly attractive.

21



22 CHAPTER 3. ATTENUATION CORRECTION METHODS

3.1 Calculated Methods

Calculated attenuation correction approaches determéledtly contour from the emission data
alone, which is in general a difficult task. Then, a uniformstdbution of linear attenuation co-
efficients is assigned to the inside of the body, where thenmadge of the attenuation has either
to be known, be determined empirically or is based on theoassumptions. Hence, calculated
attenuation correction is only appropriate for brain stgsdiut more adequate methods must be
performed where the attenuation coefficient distributeonat known a priori such as the lungs,
where the density varies by as much as 30% [27], and also éasasf inhomogeneous attenu-
ation such as the chest. Therefore, the clinical applinatiocalculated attenuation correction
methods was limited to brain studies.

The body contour may either be delineated manually as indake of the uniform fit-ellipse
method [64] or by application of an automatic edge-detectigorithm. Besides the assumption
of uniform attenuation, the main limitation of calculate@tmods is the fact that values for the
linear attenuation coefficients of tissues have to be assume

Other ambitious and more sophisticated methods, inclutli@gpplication of statistical mod-
els for simultaneous estimation of emission and transomsgistributions and the application of
consistency conditions, which also try to determine theratation map directly from the emis-
sion data, were summarized by Zaidi et al. [70]. Howeveratlt@ors reported missing evidence
in the literature substantiating the applicability of taéschniques in a clinical environment.

3.1.1 Uniform Fit-ellipse Method

The simplest method to derive an attenuation map is to mgnthaw a slice-dependent ellipse
on a preliminary reconstructed emission image to approtarttee outline of the head. Then a
uniform attenuation is assigned within this elliptical taur. Obvious drawbacks of this method
are the operator dependence of the results, the bias due fmwtr approximation of the body
outline and the assumption of uniform attenuation. An mtaegcontour can also be drawn by an
experienced technologist but requires remarkably more.tevertheless, the manual fit-ellipse
method is still applied in clinical routine for simplicityeasons, especially when transmission
imaging is impractical or even not possible. It is furtheedi®y other approaches like the trans-
mission atlas-guided method described in section 3.3.@r@ct a preliminary reconstruction of
the emission data.
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3.1.2 Automated Contour Detection Methods

To reduce the burden on the operator and to get a better apyatan of the outline, automatic
edge-detection algorithms are applied [70]. Moreovergagperator dependence of the results is
removed by using automated techniques. To account for theicderable higher attenuation of
the skull, a higher attenuation coefficient can be assigntdnaa certain thickness of the outline
or by estimating the skull boundary from an emission imagemstructed without attenuation
correction. A more sophisticated fully automated techeithiat works out a three-component
model of the attenuation map was proposed by Weinzapfel anchiths [57]. This method gen-
erates an estimated skull image by FBP of the reciprocal adittiesion sinogram. The thickness
and radius of the skull are estimated from profiles extrafrtad this image. The resulting values
are then used to generate a model of the brain, skull and. sspjpopriately scaled linear atten-
uation coefficients determined empirically are then asgigio each brain structure to generate
an attenuation map of the head [70].
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3.2 Transmission Methods

Methods that make use of an additional transmission scanfeferred to as measured attenua-
tion correction, are most widely used to date in clinicalgtice. Clearly, these methods supply
more accurate attenuation maps, whereas the patient iscstbjadditional radiation dose. The
transmission scan may either be acquired using an exteadednuclide source similar to the
radionuclides used in ECT or using a X-ray source as in CT. Therlas especially the case
for combined ECT-CT scanners where no additional image fusamto be performed to co-
register the CT image with the emission image. Due to the fadtradionuclide transmission
methods rely on mono-energetic photons just as emissiogingathe attenuation maps gener-
ated by these are considered as gold standard when compé#fergnt methods for attenuation
correction. Whereas radionuclide transmission imaginglisassnethod widely applied in clin-
ical practice to determine the patient-specific attennati@ap, the utilization of CT images has
evolved while dual-modality imaging systems became mdenton.

3.2.1 Radionuclide Transmission Imaging

In radionuclide transmission imaging in principle an ergdrsingle-photon or positron emitting
source of radiation is placed on one side of the patient aretectbr on the other side measures
the transmitted photons before (pre-injection), durings{gnjection, simultaneously) or after
(post-injection, sequentially) emission scanning. Theasoeements are then compared to the
counts of photons observed during a blank scan that is td&emstance, once each morning
when no patient is present in the FOV. Normally, the blankissacquired over a long duration
and therefore can be assumed as almost free of noise. Ta@fdltie intensity of the transmis-
sion scan to the intensity of the blank scan yields the tréttestinfraction as it can be derived
from equation (2.4). Logarithmic transformation finallyeids:

I ( IIO %’7?)) . /L ., Hd (3.1)

wherel, and are in particular the sinograms of the blank and transmssoan parametrized
over the projection anglé and the transverse positiérand the corresponding projection lines
are denoted by..
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Hence, the attenuation map can be reconstructed from theah&igarithm of the blank-to-
transmitted sinogram ratios. Iterative reconstructiopreferred, since the Poisson nature of the
radioactive decay and random coincidences can be includgdttunbiased images with lower
variances than by FBP, especially in PET [41, 16]. Howevenaéqgn (3.1) already yields the
ACFs needed in PET if a positron emitting transmission soigaesed, since the energies of
transmission and emission photons are then the same. lceibgs no reconstruction of the atten-
uation map has to take place. In all other cases, the recatestr linear attenuation coefficients
have to be transformed to the photon energy of the emissuogs.

King et al. [26] reported that statistical noise in reconsted emission images is dominated
by the noise in the emission profiles and not the noise in tngsson images. The reason for
it is that the noise in the attenuation map is averaged ouamptocess of forward projection to
calculate the ACFs. Nevertheless, as the number of countarisrhission profiles decreases, a
point is reached where not only does the noise in the attemuaiap increase, but the measured
attenuation coefficients start to exhibit a bias resultmgm overestimate of the amount of at-
tenuation in the slices on reconstruction. Thus, low traasion counts, cross-talk contributions
from the emission isotope, scatter and truncation of thestrassion data are the major causes for
artifacts in the transmission images, which in turn causi&ats in the reconstructed emission
images as evaluated in SPECT by Celler et al. [9] and in PET b¥lklet al. [35]. Mechani-
cal collimation is required when single-photon emittingnsmission sources are used to reduce
scatter in the transmission data to get a good estimate miwdoream attenuation coefficients.

Transmission imaging is basically performed either prepast-injection of the radiophar-
maceutical used for emission imaging, where in both cases/rapproaches have been pro-
posed to reduce the artifacts in the transmission imageseday previously mentioned factors.
Some of these approaches are described in more detail infalteats. Several transmission
imaging geometries adopted in SPECT were summarized by ZadiHasegawa [62]. More-
over, an overview of different transmission source andmallor configurations used in simul-
taneous transmission-emission SPECT imaging for singhetlaed multiple-head systems was
given by King et al. [26]. The radionuclide used as transioissource is mainly’Co, **"Tc,
133Ba, 13°%Ce, 153Gd, ?°TI or 2**Am depending on the radionuclide used for emission imaging.
PET scanners of the second generation typically used oneooe oontinuously rotating rod
sources, containing a long-lived isotope sucl®&e which decays to the positron emittéGa.
The transmission scans were commonly be acquired in 2D mabtesepta in, whereas most re-
cently single-photon emitting sources are adopted als&ih &llowing for transmission imaging
in 3D mode with septa out. Particularly modern PET scanngesate in 3D mode only.
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Important drawbacks of radionuclide transmission imaging the extra complexity of the
system design and the data acquisition and processingcpistand the extra cost resulting from
the periodic requirement to replace expensive sources [B6inajor limitation of the use of
positron-emitting transmission sources in PET, espgaialBD mode, is the high photon flux in
the detectors closest to the source, which usually leadsger scan times because of detector
dead time. However, this problem can be relieved by elemwimdowing the transmission data
so that only events collinear with the known location of thd are accepted [62].

Pre-injection Radionuclide Transmission Imaging To avoid the contamination of the trans-
mission data, the transmission scan is performed beforéngtration of the radiopharmaceu-
tical. Especially in PET, where a positron emitting souscased for transmission imaging, the
separation of both scans, if acquired post-injection, iteqiifficult since both transmission and
emission photons have the same energies. However, segjuestismission-emission imaging
increases imaging time and suffers from image registraggitoblems caused by patient misalign-
ment or motion. The increased acquisition time is espgcaaiandicap in whole-body imaging.

To reduce the acquisition time, short transmission scardofit 2 to 3 min are performed
leading to limited transmission counts and consequenglydrinoise in the transmission images.
This is because transmission data undergoes a non-lireeefdormation before reconstruction
as shown in equation (3.1), which introduces singularitied systematic bias. Assuming that
the transmission data is corrupted by additive naisarising from Compton scatter or random
coincidences in PET, the line integrals are given by [41]:

o I1(0,t) — n(6,1)
/L(M) u(x,y)dl = —1 ( 1(@.1) ) ) (3.2)

Since the logarithm is only defined for positive numbers, lite integrals do not exist for zero
or negative values of the numerator on the right side of egu#8.2). Moreover, the logarithm
skews the distribution of the line integrals for low-couatalsuch that the estimated integrals are
biased. Therefore, the integrals are undefined for somegironps and biased for others [41].
One way to reduce noise in the transmission data is the sdgthattenuation correction
(SAC) approach proposed by Xu et al. [58]. The reconstrugtatsimission image pixels are
segmented into populations of uniform attenuation. Thalteg distribution of linear attenua-
tion coefficients is then forward projected to get new ACFsisTaduces noise in ACFs while
still accounting for specific areas of differing attenuatid he majority of segmentation methods
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used are either histogram-based thresholding techniquagzy-clustering-based segmentation
techniques. Whereas the performance of the first techniggg@snds strongly on the choice of
thresholds, techniques of the last category demonstradesllent performance and produced
good results as an automated, unsupervised tool for segmgertisy images in a robust manner
[62, 70]. A method based on the fuzzy C-means (FCM) algoritlamirfstance, was presented
by Zaidi et al. [61]. Meikle et al. [35] investigated the irgluce of count-limited transmission
data on the noise and quantitative accuracy of reconsttuictages in PET and concluded that
accurate attenuation correction can still be performed\Z $hethods are applied.

Other approaches to reduce noise in transmission imagksleaon-linear Gaussian fil-
tering as evaluated by Kitamura et al. [29], anisotropid¢udibn filtering as investigated by
Demirkaya [11] and iterative reconstruction algorithmgres ML-EM algorithms [41, 16] and
the median root prior iterative reconstruction method pemal by Alenius et al. [1]. An ad-
vantage of the iterative reconstruction methods is that #re object independent and robust,
because no smoothing or segmentation is used. On the othdr balculation time is longer
especially in the case of whole-body studies.

As mentioned before, coincidence transmission imaging patsitron emitting rod sources
in PET suffers from poor SNR due to low counts resulting frasskes caused by dead time of
mainly the detectors on the near side. A first prototype sipgloton transmission measurement
method was implemented and evaluated by de Kemp and Nahih#fsThis method removed
the coincidence requirement and adopted the singles ewéatsnihilation photons to get the
transmission image, whereby SNR could be dramaticallyemeed. The feasibility of using
right single-photon emitting transmission sources of gnether than the one of the annihilation
photons in PET was investigated almost at the same time by &aal. [25] and Yu and Nahmias
[60]. The authors of both suggested to 48€s with a photon energy of 662 keV and a half-life
of 30.2 y as transmission source, which has low costs cordgardée commonly use¥¥Ge rod
sources and needs no replacement due to its long half-ifpaced t#8GeFPEGa with a half-life
of about 275 d. Moreover, it has the potential to be used it-jpgesction transmission imaging
with energy discrimination to separate the transmissiomfemission data. One significant
advantage of single-photon transmission imaging in PETas & stronger source can be used
without saturating the system. As a result, a very high phdlax is recorded, which leads
to high-quality scans compared to coincidence measurengerd a remarkably reduction of
acquisition time. However, post-processing of the dataaodform the measurements to the
energy of the annihilation photons and, even with a narroergghwindow, additional scatter
compensation are required.
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Post-injection Radionuclide Transmission Imaging To reduce the overall acquisition time,
the transmission scan is performed after administraticgheofadiopharmaceutical such that even
simultaneous transmission-emission imaging is possiblas has proven to be very practical
especially in whole-body oncology studies in which mukipked positions are needed. However,
cross-talk between transmission and emission measursiasto be obstructed.

Properties a radionuclide for simultaneous transmiseioission imaging in SPECT should
have were given by King et al. [26]. The ideal radionuclidewdoemit mono-energetic photons
of energy lower than those of the emission source to avoigdsecontamination. On the other
hand, it would emit photons of energy close enough to redueertagnitude of the correction
required to convert the attenuation map measured at themiasion photons’ energy to that of
the emission photons. Furthermore, it would have a longlial§o that the transmission source
will require replacement infrequently and last, it would be expensive to manufacture. Given
these requirements$>Gd, for example, is a good choice to use as transmission sdardn
SPECT commonly used pharmaceuticals labeled #iffic [26].

Amongst all possible configurations of transmission imggaometries in SPECT, the scan-
ning line source with parallel-hole collimation and elediic windowing to store only the events
detected in a narrow region opposed to the line source aratiarsry line source with conver-
gent fan beam collimation have attained widespread use. &dbeéhe advantages of the conver-
gent collimation are that no mechanical motion is requined that it provides a better spatial
resolution sensitivity combination for small structuregls as the heart, the disadvantages are
that the line source has to be fixed at the focal point of thineator and the increased trunca-
tion of the FOV. However, both methods measure near nareaviattenuation coefficients and
moreover reduce greatly the influence of cross-contananati

Meikle et al. [36] proposed a methodology for attenuatiorrextion in whole-body PET
using simultaneous emission and transmission measursif®&aT). The SET method employs
sinogram windowing of low activity®GefGa rod sources, an SAC approach and ML-EM re-
construction using the OS-EM algorithm. The sinogram winidg technique continuously en-
codes the angular displacement of one or more rod sourcgsgpabout the center of the FOV,
enabling the determination of sinogram elements repreggnobllinear detector pairs. Coinci-
dences recorded within a narrow window centered on eachreostared in a seperate sinogram
of primarily transmission events from those primarily esios events recorded outside the win-
dow. However, some coincidences spill over into the otherdaw at a time. Fortunately, the
spillover fraction is constant and depends only on the waftthe sinogram window, but not
on the emission source distribution and geometry. The SACaaeh used by Meikle et al. ap-
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proximates the whole-body histogram of the ACFs by Gaussiaotions about the lung and
soft tissue peaks. Then, cumulative probability densibcfions are calculated for each peak by
integrating under the fitted curve, which are then used wutatle for each pixel the probabilities
that it belongs to lung or soft tissue. New attenuation coleffits are calculated as the by the
probabilities weighted sum of known attenuation coeffitsdéor lung and soft tissue.

Since, as mentioned before, single-photon transmissiagimy has been shown to be feasi-
ble also in PET, simultaneous acquisition was offered hystmgission sources that emit photons
of energy different from that of the annihilation photonscliical evaluation of single-photon
attenuation correction using’Cs for 3D whole-body PET was first accomplished by Watson
et al. [56]. The authors concluded, that, at least with thetqmol they used, high emission
background is not a significant problem in post-injecticangmission imaging and that such
attenuation corrected emission images are acceptablérmat use in most cases.

3.2.2 X-ray Transmission Imaging

X-ray-based transmission imaging is conceptually idehtic single-photon-based or positron-
based transmission imaging as described in the previou®seamn radionuclide transmission
imaging. Since in CT photon attenuation governs image cshtpaxel values contained in CT
images are related to the attenuation coefficient at thattpdilence, it is not surprising that
CT can generate patient-specific attenuation maps as walCThmage may either be acquired
separately and then co-registered with the emission imalgetter and more commonly acquired
sequentially on a dual-modality scanner, thus alreadyegstered with the emission data.

An advantage of CT-based attenuation correction are therbggiution transmission images
with much lower statistical noise than in standard transiorsimaging. Nevertheless, the high-
resolution CT images are usually down-sampled and Gaus#iaredi to match the resolution
of the emission data. Further advantages are the shortes tieguired for collecting the trans-
mission data, which improves patient comfort and throughgmd that it is no longer necessary
to include radionuclide transmission sources, thus eltimg both the cost of including these
components and the periodic replacement of decayed sd@rides
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However, opposed to the mono-energetic photons emittedhdyadionuclides, the X-ray
source in CT emits photons which cover a relatively broadgnspectrum from 20 to 140 keV.
Moreover, the attenuation at these energies is a combimafidooth photoelectric effect and
Compton scattering, whereas at the emission photons’ efregg T the contribution of photo-
electric effect is essentially negligable [4]. Hence, thei@&ges have to be energy-translated
to an accurate attenuation map at the emission radionusheryy, where the measured attenua-
tion coefficients in CT correspond to the attenuation at thexa¥e CT energy. The effective CT
energy is defined as that photon energy at which a given rahweiti exhibit the same attenua-
tion coefficient as it is measured by CT. However, for a propagaX-ray beam, the low energy
photons are preferentially absorbed, so that the remabeagn becomes proportionately richer
in high energy photons. This phenomenon is called beam hengl¢24]. Consequently, the
actual effective energy may vary spatially. Pixel valueseiconstructed CT images are scaled as
Hounsfield units (HU), named after Godfrey Hounsfield [24]:

CT

H = 1000 (’é—T . 1) , (3.3)
:uwater

where H is the CT number in HU.CT is the reconstructed linear attenuation coefficient and
pSL  is the estimated linear attenuation coefficient of watehatffective CT energy.

In this scale, air has the value -1000, water has the value aad tissues denser than water
have values greater than zero. CT numbers in the range of 1b0B€ro primarily represent
regions that contain mixtures of lung and soft tissue, wdieregions having CT numbers greater
than zero are those that contain mixtures of soft tissue ané.bCompact bone typically has
values in the range from 1000 to 2000, whereas adipose tesiealues near -100 [28].

Unfortunately, there is no unique transformation from CTrgies to the emission photon
energy when the object contains a complex mixture of matesimponents such as CT contrast
agents or metallic objects. Errors can also arise from ragpy motion, truncation of the FOV
in CT, and beam-hardening or scattered radiation if the pegi@arms are in the FOV of the
CT scan [28]. A summary of pitfalls of CT-based attenuatiorrection in PET and potential
solutions was just recently published by Zaidi et al. [69].

Basically five methods have been proposed to obtain att@muediefficients at the emission
photon energy from CT images: segmentation, uniform scaliigear scaling, hybrid segmen-
tation/scaling and dual-energy decomposition.
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Segmentation This method forms the attenuation map by segmentation ofdbenstructed
CT image into different regions such as soft tissue, bone amg &nd then substitution of the
CT numbers in each region with the appropriate attenuatiefficents. A significant problem
is that any errors in segmentation can lead to artifactsenréiconstruction of the attenuation
corrected data. Furthermore, certain tissue regions \aifeldensities that are not accurately
represented by a discrete set of segmented values suchr &xafople, the lungs, where the
density can easily vary by as much as 30%. Such segmentatas will affect all LORs passing
through the misclassified region which can lead to the gé¢ioeraf artifacts when applied to the
emission data [4]. However, Kinahan et al. [27] reported tha segmentation method produced
good results and that an alternative segmentation methetéden proposed by Xu et al. [59]
which has proven to be robust even in areas of gradually ¢hgnigsue density. This method
combines tissue classification and measured values, hovsevié cannot be used directly.

Uniform Scaling The simplest method is to scale the measured attenuatidficcer@s by a
global scaling factor using the fact, that, for most mateyide ratio of the attenuation coefficient
at any two photon energies is essentially a constant. The e&fttenuation for water at the
emission photon energy and the effective CT energy yieldsthaéng factor. Before, the CT
numbers must be translated back to linear attenuation ceeffs according to equation (3.3).
All'in all, the energy-translated attenuation coefficiesing uniform scaling is given by [33]:

CT H + 1000 Hwater H + 1000
M= Uyt X = Hwater )
water 1000 uOT 1000

(3.4)

where.te; 1S the theoretic attenuation coefficient of water at the simrsphoton energy.

This linear translation method provides a good approxiomator scaling between photon
energies where Compton interactions dominate the attemuediefficient, but is not as accurate
when scaling from lower photon energies, commonly found-ra)Xspectra, where photoelectric
interactions significantly contribute to the attenuatioeflicient. The error is particularly large
for higher Z materials such as bone, which contains a relatively largeep¢age of calcium,
and so has a significantly higher photoelectric fractiomtivater in the range of CT energies.
Moreover, the error is even larger in PET than in SPECT sineeettergy of the annihilation
photons in PET is 511 keV, whereas in SPECT the emission pletergy is typically in the
range of 100 to 200 keV. Thus, the resulting attenuation raapgrately estimate the attenuation
coefficients for both muscle and lung tissues, but not foressues [33, 4].
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Bilinear Scaling Instead of just applying a linear translation, Blankespdale [5] derived

a piecewise linear function for SPECT at 140 keV. Therefogghantom study with calibration
materials, particularly air, water and bone-equivalenttsans, has been performed. Then a
piecewise linear calibration curve was obtained from thislyg which was more precisely a bi-
linear function with a change in slope at the CT number of wdtkis method can be considered
as combining an air/water mixture model for -1000H < 0 and a water/bone mixture model
for H > 0 [28].

Burger et al. [7] evaluated a transformation of CT into PETratsgion coefficients that uses
the bilinear function:

H+1000
,uwater 1000 ° H S 0

p= : (3.5)

T

C
s ter(#bonc_#water)
_|_ H wa’ H > 0
Hwater 1000(uCT —uSTo)

where the linear attenuation coefficients were estimated affective energy of the X-ray spec-
trum of 80 keV and the energy of the PET annihilation photdrisld keV. Particulary, the linear

narrow-beam attenuation coefficients used for the transition of CT into PET attenuation co-
efficients were:

frwater = 0.096 cm ™!

Hbone — 0.172 cm™!

(3.6)
plt. = 0.184 cm™!
pT = 0.428 cm™!.

However, the authors reported that using faf.... the theoretic narrow-beam value of
0.096 cmt' for the transformation resulted in an obvious discrepandiié range of 0 to 200 HU.
Therefore, the transformation was modified to be based oaxperimentally determined value
of 0.093 cm' that was measured with a phantom.

The same bilinear function was mentioned in an only recentilylished article of Patton
and Turkington [42] for SPECT. Although the formulas printaedhe article are incorrect, it is
clear, however, that the authors indeed used the bilinewatiin given by equation (3.5) with
the theoretic linear attenuation coefficients at the PEThalation photon energy appropriately
substituted with the linear attenuation coefficients alSRECT emission photon energy.
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Hybrid Segmentation/Scaling Another straightforward solution that combines the segaen
tion and uniform scaling approaches to overcome the diffeéan ratios of attenuation coeffi-
cients at any two energies for bone and non-bone tissuegustteegment the bone component
of the CT image and to scale it differently. This hybrid methaas proposed by Beyer et al. [4]
for PET and later evaluated by the same authors in [27] winereggmentation is carried out by
simple thresholding. The hybrid method is unlike the bidginenethod not piecewise continuous,
since the change in scaling factors leads to a discontiratityre threshold value. Neverthe-
less, both the bilinear and hybrid scaling methods work wegltlinical procedures where only
biological materials are being imaged [28].

Dual-energy Decomposition In dual-energy decomposition, the CT image is acquired at two
different effective photon energies and these data is teed to extract the individual photoelec-
tric and Compton contributions to the attenuation coeffici€he different contributions can then
be scaled separately in energy and combined to form a moaigetic attenuation map at any
emission photon energy [4]. The dual-energy decompost#mtheoretically produce an atten-
uation map which accurately estimates the attenuatiorficeesits of all tissues, including bone,
and is free from beam hardening artifacts. However, whetiseérg an energy-discriminating
detector or a conventional CT scanner for data collectioal énergy measurements are, in gen-
eral, more difficult and time-consuming to obtain. Furtherej the X-ray beams must be highly
filtered so that there is minimal energy overlap of the higt v energy beams. Moreover,
dual-energy CT applies more radiation dose to the patiefjt [B8overcome the potential time
penalties and to reduce both costs and patient dose, Guyl&]alesigned an acquisition pro-
tocol where the beam energy is switched between alternagssiproducing two interleaved
attenuation maps and allowing two complete attenuationsnaaifferent effective CT ener-
gies to be obtained from one CT scan. The authors referrecetoritethod as Dual Energy
Transmission Estimation CT (DETECT).
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3.3 Atlas Methods

Atlas-based methods try to derive the patient-specifiaatidon map from an inferred atlas of
attenuation coefficients scaled to the appropriate phot@ngy. The main idea behind these
approaches is to obtain the attenuation map by anatomidatdization, which warps the atlas
image such that the result can be considered as being a regssrof the spatial distribution
of linear attenuation coefficients of the examined patient.

Montandon and Zaidi [38] emphasized the conceptual difflezdoetween anatomic standard-
ization, also called spatial normalization, and co-regtgin. Basically, co-registration aims to
match images of a single subject, usually of a differenterac modality, through rigid or non-
rigid transformation. Contrary, the purpose of anatomiadsadization is to transform images
of individual subjects into a standard, for instance a stash@rain. Another important difference
is that a true solution exists for registration but not foatmmic standardization. Standardization
therefore has to be performed with caution. Neverthelessegistration and spatial normaliza-
tion are the same from a mathematical point of view and thlgedy explicitly distinguished.

A rather important conceptual limitation of the approachessented here is that existing
patient-specific anomalies cannot be modeled in an atlasnaat from a single or even an aver-
age representation of the population [38].

3.3.1 Inferring-attenuation Distributions Method

The method of inferring-attenuation distributions (IADasvdeveloped by Stodilka et al. [53] to
correct brain SPECT images for photon scatter and attemuatibe motivation of the method
was that neurologically impaired patients are unable tgpkbeir head motionless for the ex-
tended duration of sequential emission and transmissiamssd hus, an alternative method that
does not require an additional transmission scan had toveated.

IAD is based on the assumption that a transformation mapgmadpgous features from two
SPECT scans of different subjects into the same spatial owies would also register the two
corresponding transmission scans [53]. The head atlaswasdierived from the Zubal head
phantom, a digitized high-resolution head phantom of alsisgbject. This phantom was seg-
mented to produce a tracer-specific SPECT atlas that con$iigels containing only the brain
component, simulating a SPECT scan of the phantom. Furthrernam anatomic atlas was
generated assigning appropriate attenuation coefficterttee voxels of this atlas, simulating a
transmission scan of the phantom. Both SPECT and anatomgeattaiild the functional and
anatomic component of the head atlas. The functional coemtasf the head atlas is deformably



3.3. ATLAS METHODS 35

registered to a preliminary reconstruction of the patigPEST scan and the spatial transforma-
tion is recorded. Then, the patient’s anatomy is inferrethigyanatomic component of the head
atlas. This technique was later also extended and implesddot brain PET imaging as reported
by Zaidi et al. [70].

One drawback of the method is that the applied transformatiarestricted to seven pa-
rameters for rotation, translation and global scaling. &ettsults have been achieved using a
non-linear warping algorithm instead [64]. Further doesgistration rely on the assumption
that the spatial distribution of radioactivity is repretive of the underlying anatomy [53]. A
limitation of the Zubal head phantom is that the sinus apptdbe larger than usual [53, 64] and
new phantom models based on average patient populationsotdnelp to solve this problem
owing to the large variability in size and shape of the frbstaus among patients as noted in
[64]. However, Stodilka et al. evaluated that SPECT recaostns guided by IAD are suf-
ficiently accurate to identify regional cerebral blood floefidits of 10%, which are typical in
moderate and advanced dementia.

3.3.2 Transmission Atlas-guided Method

An extension to the previously described IAD approach wapgsed recently by Montandon
and Zaidi [38]. One of the improvements to yield more robasgwas to construct the transmis-
sion and tracer-specific emission atlases based on aveatigetpopulations rather than a single
subject. Thus, also eliminating the reliance on the hypatalktracer distribution. The second
improvement is the use of a non-linear warping algorithrteiad of just a simple global rescaling
procedure as also already suggested in [64]. In contratyetmdn-corrected preliminary recon-
struction of the emission image, a model-based scatteecton and uniform fit-ellipse based
calculated attenuation compensation were performed éder preliminary reconstruction step
to improve registration accuracy [53, 38], whereupon tlygwiathm performance strongly de-
pends as the registration is the crucial step which is in comwith all atlas-based methods.

Montandon and Zaidi also assessed the quantitative agoof#we method for 3D brain PET
in [39] using automated volume of interest-based analydisy reported a very good correlation
between the atlas-guided and measured transmissionegattEnuation correction techniques.
Nevertheless, relevant issues include the effect of abalcmatomy and/or uptake in patients as
well as the relevance of building tracer-specific templ&besllow application of the proposed
algorithm for children and other tracers. The authors exgasl the use of cost-function masking
to exclude abnormal anatomy or uptake during the normadizgtrocedure.



36 CHAPTER 3. ATTENUATION CORRECTION METHODS

3.4 Magnetic Resonance Imaging Methods

The goal of MRI-guided attenuation correction methods ise¢ove the attenuation map from
an MR image of the patient whose emission data is to be cededtherefore, the MR image
has to be aligned in any way to a preliminary reconstructets®on image as it is also the
case for atlas-based methods. However, a already coesgisMR image will be available
once a combined PET-MR scanner is on the market. By then, metivithin this category
of attenuation correction strategies have to deal with tleblpm of separately acquired MR
images. But the actual difficulty is to find a mapping betweembn-standardized, by means of
magnetic field inhomogeneities distorted intensity valaled the appropriate energy-dependent
linear attenuation coefficients. Thus, few publicationdradsed this type of approach so far and
none of them yet produces unconditionally satisfying rasselspecially in whole-body ECT. The
latest methods adapt atlas-based approaches and coultkattassified as atlas-based methods,
however, an MRI acquisition is employed to guide the deteatiom of the attenuation map,
whereas plain atlas-based methods do not require an addiioquisition besides ECT.

3.4.1 Segmented Magnetic Resonance Imaging Method

Zaidi et al. [63] developed an approach to derive the attémuanap from a segmentation
of a co-registered MR image. The authors aimed in generahvestigate the feasibility of
segmented MRI-guided scatter and attenuation correctiosiiiulate combined ECT-MRI, the
brain component of the MR image is extracted and is realigoedpreliminary reconstruction
of the emission data using an automatic algorithm. Sincest lbeen shown that scatter and
attenuation correction of the preliminary reconstructedssion data improves registration, a
model-based scatter correction and calculated uniforellfise method are performed before
the preliminary reconstruction. The recorded spatialdf@mation is then applied to the original
MR image. Then, to determine the attenuation map, the MR @énsagegmented into five regions
of air, brain tissue, skull, nasal sinuses and scalp by mefaa$uzzy clustering segmentation, in
particular a FCM algorithm, where a contour detection atparmiis used to identify the external
boundary of the head. Because brain and scalp tissue havere attenuation properties,
they are merged afterwards. Appropriate attenuation oiefis are now assigned to the four
remaining regions followed by Gaussian smoothing to apprate the resolution of the ECT
scanner, resulting in the final MRI-guided patient-specifierauation map. An attenuation map-
guided scatter correction using the single-scatter sitimmaechnique is performed, prior to the
non-uniform attenuation correction and the final recortsion of the emission data.
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Such as CT-based attenuation correction using segment#tiersegmented MRI method
has the problem that any errors in segmentation can leaditacés in the reconstruction from
the attenuation corrected data. The authors indeed repitrée the difficulties associated with
automatic segmentation of the skull on the T1-weighted-spimo images using the FCM algo-
rithm led to some manual intervention of the operator. Thisrivention consisted in filling the
complexly shaped skull base using a morphological clospeyation to make it more uniform.
Since the FCM algorithm does not place any contextual canséran the membership functions,
excessive noise and other artifacts such as intensity ingeneities that are not unlikely in MRI
may obstruct the segmentation. Furthermore, certaindissgions will have densities that are
not accurately represented by a discrete set of segmeniigesvaAdditionally, the attenuation
of the classified tissues has to be assumed. Another veryriamarawback of segmented MRI
is that some anatomy may be missed by MRI, as, for example,dmta compacta and air do
not contribute a MR signal whereas their attenuation caeffts are maximally distinct [20].
Notwithstanding, the authors reported results that indieasmall but noticeable improvement
in image quality as a consequence of the reduction of noispagation from transmission to
emission data. But it has also be noted that these resultestreeted to brain PET imaging and
the amplification for whole-body PET imaging has yet to bestigated.

3.4.2 Nuclear-medical Magnetic Resonance Atlas Method

Krieg et al. [31] developed a method that adapts the ideala$-ftased methods to an MRI-
guided approach. An atlas with a reference MR image and a&sponding correction data

set, entitled nuclear-medical magnetic resonance (NM-MR}ais generated and provided for
attenuation correction of the emission data. The inforomatequired for attenuation correction
is present, for example, in the form of attenuation coeffitsedue to the correction data set.
The data points of the reference MR image are either assdcditectly with data points of

the correction data set or indirectly with values of the eotion data set via the assigned MR
intensities. For the first purpose, the reference MR imagktla@ correction data set are stored
in a common matrix. For the second purpose, the referencemtéRsities are classified into the
most probable tissue types and known attenuation coeffsceme associated with the intensity
intervals of classified tissue types. The determinatiorheffatient-specific attenuation map is
carried out in two steps, where the MR image of the patiensssiaed to be co-registered with
the emission data. First, the reference MR image of the NMa#&s is registered with the MR

image of the patient and the transformation is recorded.n;Ttiee recorded transformation is
applied to the correction data set yielding the attenuatiap used for attenuation correction
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in case that the correction data set consists of approptsgauation coefficients. Compared
to the atlas-based methods described in the previous settie NM-MR atlas-based method
generally just substitutes the registration of the atla \&i preliminary reconstruction of the

emission image with a registration of the reference MR imaijle the co-registered MR image

of the patient. However, this difference has an importamiaat on the registration accuracy that
can be achieved, as an intramodality instead of intermiydadpistration is employed, where

both images to be registered image the same type of infaomati



Chapter 4

Magnetic Resonance Imaging-guided
Computed Tomography Prediction Method

The combination of PET with MRI instead of CT is currently in gress while first brain im-
ages have yet been published, demonstrating the feasiilihis technological evolution [50].
However, it has also been emphasized that a major issue tetivation of an accurate non-
uniform attenuation map from the simultaneously acquirdd Mhage. Recently, Zaidi [65]
occupied himself with the question if MRI-guided attenuatarrection is a viable option for
dual-modality PET-MR imaging, where he outlined the diffies associated with such an ap-
proach. The major difficulty lies in the fact that the MR sigpatissue intensity level is not
directly related to electronic attenuation, which rendemsversion of MR images to attenuation
maps less obvious. Moreover, pixel values in MRI are not ntim@é as is the case in CT, where
Hounsfield units determine different tissue types. In MRifedéent types of tissues can have
identical signal intensities and similar types of tissua bave different signal intensities. In
addition, signal intensity varies strongly between MR i@&gOn the other hand, transmission
imaging is no choice for PET-MRI because of the limited spa@lable, thus, circumventing
the placement of external radionuclide sources. Beneatfethalready proposed MRI-guided
attenuation correction approaches, little convincingitshave been achieved so far.

The evaluated CT atlas-based approach to determine theiatiem map guided by MRI is
presented in this chapter, moreover, it is related to othgpgsed approaches where reasonable.
At first the basic concept of the approach is explained. MAfeds, both major steps, first to
predict a CT image from the MR image of the patient, secondaostate the CT image to a
patient-specific attenuation map, are described in deiaigast follows a brief recapitulation of
the compensation for photon scatter and attenuation duergnstruction.

39



40 CHAPTER 4. COMPUTED TOMOGRAPHY PREDICTION METHOD

4.1 Overview

The idea of the presented approach to determine the attenumép from a co-registered MR
image is quite straightforward and can be viewed as a coribinaf different already proposed
attenuation correction methods or the application of CT-Mgistration followed by any CT-
based technique. However, as usual, the difficulties aceich the details that have to be solved
to come up with a practical working solution, eventuallyeTtow of data and the steps deployed
to determine the attenuation map at the emission photoggfrem the patient's MR image are
summarized in Figure 4.1. In a first step, an approximatioa ofray transmission scan of
the patient is predicted using the anatomical informaticovigled by MRI. This step applies
deformable CT-MR registration and makes use of a CT atlas. Tifeepatient’s attenuation map
at the emission photon energy is determined applying wadlakn CT-based techniques. After
the attenuation map is available, it can be incorporatedaméconstruction of the emission data
to compensate for scatter and attenuation.

Since methods are yet being successfully applied whiclré@te the attenuation map from
a CT image, the second step of generating the attenuation ntla@ emission photons’ energy
from the predicted CT image does not pose a problem. Hencendire step whose feasibility
and robustness has to be investigated is the CT predictipn ste

CT Atlas —+———atlas CT(s)

MRI MR image—>< CT Prediction >
\
pseudo CT
v
Attenuation Map
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|
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v
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ECT ——— ECT data —»C Reconstruction }ECT mage >

Figure 4.1: Compact flow chart of the MRI-guided CT predictiortimoe
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4.2 Computed Tomography Prediction

The anatomical information contained in the MR image is usepredict a CT of the patient.
Deformable CT-MR registration is applied to infer CT numbewsf a suitable CT image pro-
vided by an atlas, optionally pre-selected from a set ofresfee CTs. The resulting CT image
is considered as a prediction of a X-ray transmission scaheopatient pictured by MRI that
is scaled at Hounsfield units and is referred to as pseudo G cdtresponding flow chart ex-
panded on the prediction of the pseudo CT is given by Figure 4.2

The used terminology already implies the relation to the Bthod proposed by Stodilka
et al. [53], that was more recently extended by MontandonZaidi [38]. In contrast, a CT at-
las is used and the attenuation distribution is inferredgisi spatial transformation obtained by
CT-MR instead of atlas-ECT registration, which is more rololug to the registration of anatom-
ical images only. Registration of anatomical and functiomalges may be difficult, as the func-
tional image may provide insufficient anatomy. Moreoveg, tirethod introduced in this chapter
is quite similar to the method proposed by Krieg et al. [31ifhwvihe correction data set consisting
of proper CT numbers. Again, the actual difference is therdetation of the transformation,
which is accomplished indirectly by Krieg et al. using imh@dality registration but directly by
the investigated method using intermodality registration

4.2.1 X-ray Transmission Atlas

The foundation of the CT prediction is a reliable atlas fromcliran appropriate CT image can
be attained that ideally would correlate with the unknowngua-specific spatial distribution of
CT numbers. Clearly, a global atlas will almost never meet idhesl situation, however, the
atlas can provide CT images which are common for human beBagsically two types of CT
atlases suggest themselves: An atlas consisting of onlyepresentative average CT or an atlas
composed of a whole set of average CTs each representatiyista specific subgroup. An
advantage of the latter is that it may also contain averagei@@ging abnormalities ordinary
for different diseases. Moreover, the set of CT images shoaldtain combinations of opposing
features like child and grown-up, skinny and plump, malefantale, especially in regions where
it makes appreciable difference such as the thorax andspe®n the other hand, a complex
atlas composed of a set of CTs requires more disk space andmogantly does it require an
appropriate template selection strategy on the basis giagtient’'s MR image that utilizes pattern
classification. This classification increases the comptessten more and may also increase the
sensitivity of the CT prediction. However, an operator cquie-select a suitable subset.
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4.2.2 Deformable Registration

To infer the spatial distribution of CT numbers, a deforma®leMR registration, in particular
non-parametric registration following rigid pre-regétion, is suggested. The mathematical set-
ting of such a deformable registration and numerical sclsemeolve this kind of mathematical
problem were given by Modersitzki [37] in his extensive andtinematical precisely phrased
book on numerical methods for image registration. The pggstration can be carried out man-
ually and/or automatically, where the transformation &nieted to translation and rotation only.
In this section, the required mathematical setting used bygévsitzki is first re-considered, fol-
lowed by the general mathematical framework of the non+patac registration problem. Af-
terwards, the distance measure commonly used for automsérenodality registration and the
recommended regularization of the non-parametric registr are discussed.

Mathematical Setting According to Modersitzki [37, ch. 3.1], in the following amageb
is viewed as a mapping which assigns each spatial locatitelonging to a certain domain
Q C IR? a gray valueéh(x) € IR. Furthermore, the functiolhas the following properties:

1. bis compactly supported,
2. 0< b(x) < oo forall z € IR* and
3. [gs b(x)*du is finite for k > 0.

As an image is digitalized, which means that intensitiesdéserete and given on a discrete grid
only, an appropriate interpolation scheme has to be chdsdrptovides interpolated intensity
values for non-grid points, too. The interpolation scheswostly based on linear interpolation
and has to avoid interpolation artifacts which were ingzged by Pluim et al. [44].

Considering the registration problem, cf. [37, ch. 3.3 and8gference? and a templat&”
are given and a spatial transformatigns searched such that the deformed temglatewhere
To(x) := T o p(x), is as similar as possible to the referegeaccording to the similarity
measure used. In the case of non-parametric registratomahsformatiorp can be written as:

p(x) =z —u(), (4.1)

whereu : IR®> — IR? is the so-called deformation or displacement field. Consettyyefor
readability reasons, the by the deformatiodeformed templaté’ is denoted as:

Tu(x) =T(x —u(x)) . (4.2)
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Variational Formulation A direct minimization of a suitable distance measirés not pos-
sible since this problem is ill-posed, which means that sofenges of the input data may lead
to large changes of the output data. Moreover, as the prolderat convex, no unique solu-
tion exists and the deformation may not even be continuobg. rémedy is to impose implicit
assumptions on the transformation and thus to come up witippropriate measure both for
the similarity of the images as well as for the likelihood oh@n-parametric transformation.
Therefore, a regularizing term or smootheiis introduced which makes it possible to distin-
guish particular transformations which seem to be mordylikgan others. So, the variational
formulation of the non-parametric registration problergiigen by [37, Problem 8.1]:

u = arg min J([u] , (4.3)

whereJ is a functional defined as:

J[u] := D[R, T,] + aS[u] . (4.4)

The distance measure can be viewed as the driving force of the registration, waetée reg-
ularizer controls the transformation. Moreover, the patam € IR+ weights the regularizing
term relative to the distance measure or, in other wordsctiefne amount of regularization.

A necessary condition for a minimizer of the problem given by equation (4.3) is that the
Gateaux derivativelJ[u; v] of J, also known as the first variation of in the direction ofv,
vanishes for all suitable perturbations The stated condition leads to the corresponding Euler-
Lagrange equations and finally to a system of non-lineargalitferential equations.

Entropy The distance measure commonly used for automatic interidegistration is
nowadays mutual information. This distance measure iscbasentropy, which itself has been
used as distance measure as well. Hartley first introduceldl @& entropy, a measure for the
information of a message with different possibilities for each symbol that increasesgdirty
with the lengthn of a message and that depends on the number of possible reess§b]:

H :=logs" =nlogs. (4.5)

The larger the number of possible messages, the larger therdarof information to get from a

certain message. If only a single message is possible, aomation can be gained by receiving
this message, since it was already known that this is the @améywhich could be received. In
this respect, the measure can be viewed as a measure ofaimnigert
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Later on, Shannon introduced an entropy that also mindslifiatent symbols may have dif-
ferent probabilities to occur. Hence, he weighted the miaiton per outcome by the probability
of that outcome occuring. The established Shannon entsoggfined as [45]:

m 1 m
H .= sz‘ log; = sz‘ log pi , (4.6)
i=1 ! i=1

wherem is the number of possible events and the t%lfrimversly relates the information gained
from an event to the propability; that it takes place. The more rare an event, the more meaning
is assigned to the occurence of the event. When all messagjesjaally likely, the entropy is
maximal, because it is completely uncertain which messaljpeweceived. Shannon’s entropy

is the average amount of information to be gained from a itestt of events.

In the case of an imag#, the Shannon entropy:

H(A) = —/ pala)logpa(a)da , 4.7)
is a measure of dispersion pf, the density of the intensity values The density of an image’s
intensities can be estimated from the histogram of its discrepresentation, which counts the
times of occurence of each intensity value. Dividing eactdgram entry by the total number
of pixels results in the discrete probability distributiofthe intensities. The density function of
these can then be estimated applying non-parametric gesitnation techniques as the Parzen
window method with a Gaussian window function as descrilwedrfstance in [14, ch. 4.3].
A density with a single sharp peak corresponds to a low epntiatue, whereas a dispersed
density yields a high entropy value.

The entropy of the joint density estimated from the jointtdggsam of two images, in turn
calculated for the overlapping parts of the images, can bd ts measure the degree of regis-
tration, as the joint histogram shows more dispersion wthiéeimages are worse registered and
vice versa. The joint entropy of two images is defined as [45]:

H(A,B) = —/ / pap(a,b)logpa p(a,b)dadb , (4.8)

wherea andb are the intensity values in imagkand imageB, respectively. If the joint entropy
is minimal, then the two images should be registered [45].
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Mutual Information  Since the joint entropy is computed for the overlappinggafithe im-
ages, it is sensitive to the size and the contents of theagveA problem that can occur when
using joint entropy as distance measure is that low valuasbeafound for complete misreg-
istrations, for example when only background overlaps. Udbinformation tries to avoid this
problem by including the marginal entropies [45]:

MI(A,B) := H(A)+ H(B) — H(A, B) . (4.9)

The marginal entropies will have higher values if the imag@#ain structures such as anatomy,
and low values for background only. Mutual information #fere penalizes transformations that
decrease the amount of information in the separate imagewever, it is still not completely
immune to the overlap problem, but less than joint entropy.

Another reasonable interpretation of mutual informatisrthiat it measures the amount of
information A contains abouB and, asM I(A, B) = MI(B, A), the amount of informatiot
contains abou#l. Hence, it is mutual information. This can be seen from [45]:

MI(A,B) := H(B) — H(B|A), (4.10)

whereH (B|A) is the conditional entropy based on the conditional density(b|a), the chance
of the intensity valué in the imageB given that the corresponding intensity in the imagbas
the valuea. The maximization of mutual information such that the antafrinformation the
images contain about each other is maximal should find therehaftion that registers the two
images.

A last well-known definition of mutual information makes uskethe so-called Kullback-
Leibler divergence, which is a measure of the distance tweo densities [45]:

T ety o 222D
MHABy—/m/;pw(ﬁﬂgmmmﬂwd%. (4.11)

It therefore measures the distance between the joint geofsthe images’ intensities and the
densitypapg, which is equal the joint density if the two densities areependent. In this case
mutual information reaches its minimum. According to thmgjtual information is a measure
of dependence between the two images. The assumption ithdratis maximal dependence
between the intensities when the images are correctlyedign

It is important to note that all three definitions of mutualoimmation given by equations
(4.9), (4.10) and (4.11) are identical and can be rewrittém @ach other [45].
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Since mutual information is based on the joint density ofithages’ intensities instead of
the intensity values directly and as it reduces the overlablpm compared to joint entropy,
it is commonly used for automatic intermodality registati Therefore, the distance measure
for the non-parametric registration problem stated by g8qu#4.3) and used for the pseudo CT
generation is suggested to be defined as:

D[R, T.] := MI(R,T,) . (4.12)

Curvature Registration The recommended regularization to control the deformatibtine
non-parametric registration used by the presented appfoaCT prediction is based on second
order derivatives:

Slu) == %Z /ﬂ (Awy(z))%dx (4.13)

This regularizing term was introduced by Fischer and Mada«s[37, ch. 12] in order to cir-
cumvent the pre-registration required by other regisiratechniques such as elastic, fluid and
diffusion registration. However, according to Modersitzke main point is not that the addi-
tional pre-registration becomes redundant but that thstratjon becomes less dependent on the
initial position of the reference and template images. Kéetess, the initial position still plays
an important role and it is not advisable to skip the prestegiion. The integrand of given

by equation (4.13) might be viewed as an approximation otthreature. Thus, the idea of the
regularizer is to minimize the curvature of the componenmthe deformation. Therefore, this
type of registration is called curvature registration. Agerty of curvature registration is that
the transformation will be smoother than the ones obtairyeal tegistration based on first order
derivatives regularizers, like diffusion.
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4.3 Attenuation Map Generation

After the pseudo CT is obtained, which is considered to be @noapnation of an actual CT
scan of the studied patient, well known CT-based technigaasbe applied to determine the
patient-specific attenuation map. At the energies of X-agca, photoelectric interactions
contribute significantly to the attenuation of photons esglly for bone but less for soft tissue.
Moreover, these interactions with matter are almost nablgin ECT especially in PET. Hence,
simple uniform scaling of the CT numbers is not sufficient aak$ accuracy at most for bone.
Therefore, commercial hybrid ECT-CT systems establishedinical environments commonly
make use of the bilinear scaling method described in se8t@®2 to translate the CT numbers of
the sequentially acquired CT image to attenuation coeffisjesince it considers the difference
in scaling for bone and soft tissue. Consequently, the lailisealing is also the method of choice
to generate an attenuation map from the predicted CT. The acinflpw chart expanded on the
generation of the attenuation map is shown in Figure 4.3.

The suggested bilinear function to translate the CT numbets the corresponding linear
attenuation coefficientg in particular reads as follows:

H+1000
Mwater 1000 ° H S 0

p= , (4.14)

CT
K ter(Mbone_Mwater)
+ [ Bwater\hone”FPwater) [T ~ ()
Hwater T 200007, =Sher)

wherepCT and ST | are the estimated attenuation coefficients of water and hotige ef-

water bone

fective CT energy angd..... andu,.n are, analogously, the theoretic attenuation coefficiehts o
water and bone at the emission photon’s energy.
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4.4 Reconstruction

The correction of the emission data for photon attenuasararried out during the reconstruc-
tion process. As noted in section 2.4, the attenuated radosform in SPECT given by equa-
tion (2.9) cannot be inverted analytically. Thereforeyateve reconstruction algorithms are
commonly applied in SPECT. These algorithms incorporatektimvliedge of the attenuation
coefficients given by the obtained attenuation map into tleeessive forward and backward
projections. Besides, a scatter model based on the attenuzftithe different tissues can be
incorporated the same way. When applying attenuation dwre@lso correcting for scatter is
recommended. Otherwise, overcorrection may occur, cftise2.3.2. The emission data in
PET, however, can be corrected for attenuation before tiual@construction as shown already
in section 2.4. The sinogram of the ACFs, cf. equation (2.i$X)omputed by forward projecting
the attenuation coefficients. Then the uncorrected PETgsamo is multiplied with the sinogram
of the ACFs to get the attenuation corrected PET sinogranecefation (2.12). Before, a scatter
correction method that also makes use of the attenuationswagpnmonly applied. However, as
both scatter and attenuation correction in PET are justiptightive corrections of the measured
emission data, the order is not of importance. After that,dbrrected PET data is reconstructed
using FBP reconstruction algorithms. Nevertheless, iteragconstruction algorithms are nowa-
days commonly applied in PET as well.
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Chapter 5
Evaluation

In the previous chapter an approach to compensate emisatanfar photon attenuation that
makes use of a co-registered MR image and an atlas CT to geregdeudo CT of the pa-
tient which then is translated to an attenuation map wasdoited and described in detail. The
evaluation of the feasibility of this approach was the gddhes study. As the generation of an
attenuation map from a co-registered CT image, as considessttion 3.2.2, is currently prior
art for combined SPECT-CT and PET-CT scanners, this step dopss®a problem. Therefore,
the pseudo CT prediction is the linchpin of the entire apgnoadence, evaluating the robust-
ness and accuracy of the CT prediction based on non-paramegistration is fundamental for
demonstrating the feasibility of the approach. Moreoves,dccuracy of such generated pseudo
CT has to be shown, where the pseudo CT has to be as accuratesasargdo get corrected
emission images which are clinical acceptable. On the dthad, the CT prediction strongly
depends on the CT atlas and the used template selectiorggtradewever, the evaluation of
these issues is left open because the sound expedience pdebdo CT generation based on
non-parametric registration only has to be shown first.

The materials and methods applied for evaluation are sumethin this chapter. Afterwards,
the results of the evaluation are presented and discussedllyi
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5.1 Materials and Methods

As there was no PET-MR scanner available for the evaluatiom¢cal data acquired at the Uni-
versi@tsklinikum Erlangen on a PET-CT scanner (Biograph 64, SisnMedical Solutions,
Erlangen) and a stand-alone MR scanner (Magnetom Trio-Bimmens Medical Solutions,
Erlangen) was adopted. The co-registered CT of the PET-CTanpag was considered as
gold standard for the CT prediction, since it is an actual X4ransmission scan of the pa-
tient also used for attenuation correction by the reconstm algorithm of the PET-CT scanner.
In addition, because the MR image was not aligned with the B&®&, the CT image of the
PET-CT image pair was used to determine the rigid transfoomaiat registers the MR image
with the PET data, simulating a simultaneous PET-MRI actjaisi A rigid transformation was
sufficient, as only brain studies were evaluated. Figurdlbi&rates the flow chart of the CT
prediction adapted for evaluation.

The CT atlas used for evaluation consisted of three head CTso dfvthem were ex-
tracted from CT images of whole-body scans. The whole-bodywWAre acquired at the Uni-
versiatsklinikum Erlangen on the PET-CT scanner, whereas the téwd CT was captured
on a stand-alone CT scanner (Somatom Sensation 64, SiemehsaM8olutions, Erlangen).
Consequently, the two atlas CTs extracted from the whole-&3dy/showed less resolution than
the third one, whereas this pictured the upper half of thelleedy. Some acquisition and re-
construction characteristics of the atlas CTs are sumnthanez&able 5.1. Moreover, Figure 5.1
draws example slices of the atlas CT images, in particular stine per transversal, sagittal and
coronal plane of each.

The registration algorithms applied for evaluation werg@lemented by Hahn and Daum,
both PhD students at the Chair of Pattern Recognition anddurtbre the main academic
advisors of the work at hand. The implementation of theserdlgns is based on the numerical
schemes derived by Modersitzki [37], where the mathemigticdlem of non-parametric regis-
tration was defined as in equation (4.3) with mutual infoioratas distance measure,
cf. equation (4.12), and regularized by curvature, cf. &qoa4.13). Moreover, the non-
parametric registration employed a multi-level approddierefore, a registration pyramid with
a given number of levelg is created, where the registration on levet [1..L] is carried out
with the images downsampled by a factorig’~!. The initial transformation on the first level
is the identity and on the higher levels the transformatesulting from the registration on the
preceding level.



5.1. MATERIALS AND METHODS 55

The clinical software InSpace 2008 was used for the evaoatit is a volume imaging
application for interactive viewing of volume data that isckeisively developed for Siemens
Medical Solutions by HipGraphics Inc., Baltimore, and mgimg used in the research of medical
image processing algorithms. An important aspect of thisrme imaging application is that it
maintains a plugin interface. This enabled the integragif@mpecially designed plugins developed
for the evaluation of the pseudo CT generation based on n@medric registration. The rigid
registration tool supplied by Hahn and Daum was also intedren InSpace.

The main plugin of the evaluation toolkit encapsulated tbe-parametric registration and
provided an interface for other plugins to adjust its par@nseand to enforce the consecutive ex-
ecution of defined workflow steps. These steps are the imptreageference and template from
InSpace, the pre-processing, the actual non-paramedistration, the post-processing of the
registration results and finally the upload of the post-pssed registered template. Besides, all
results, including intermediate ones such as the pre-psackvolumes, can be retained by other
plugins for further processing or output. The user tramsfdion of the pre-registration and a
by manual cropping defined region of interest are optionadlysidered during the import. The
pre-processing includes the resampling of the importedy@sauch that the resampled images
cover the same physical extent and are sampled on the saonetdigrid, matching the resolu-
tion of both images. The parameters of the non-parametistration are the number of levels
used for the multi-level registration, the stopping cidext the last level which get automatically
relaxed for the other levels, the stiffness of the deforamatind the distance measure to use. The
stiffness represents the parameten equation (4.4) which determines the amount of regulariza
tion, where the stiffness is natdirectly. The higher the stiffness, the more regularizatbthe
deformation takes place and vice versa. When mutual infoomat used as distance measure,
the Parzen estimation of the joint density is influenced leyrthmber of histogram bins and the
kernel width specified relative to the width of a single hggaom bin. Finally, the optional post-
processing resamples the registered template, eithee torihinal size of the imported template
or to a specific size or resolution.

A second plugin provided the user interface to the main plugiguide through the steps
of the workflow and to enable the setting of the parameterdiiberent evaluation studies.
Screenshots of the user interface are shown in Figure 5&afdr particular workflow step.

To assist the analysis of the evaluation, two further plsgetorded the parameter settings
during the execution and sampled intermediate resultsasitie pre-processed template and the
joint histogram used to measure the mutual information.r@ling a third plugin encapsulated the
output operations and a last plugin provided a user intertiastore loaded or uploaded volumes.
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label Atlas 1 Atlas 2 Atlas 3
body part head head head (upper half)
sex female female unknown
size 192 x 235 | 219x 300 512 x 512
number of slices 117 120 28
pixel spacing (mm x mm)| 0.95x0.95| 0.95x0.95 0.65 x 0.65
slice thickness (mm) 2.00 2.00 4.00
scanner Biograph 64| Biograph 64| Somatom Sensation 64
low dose yes yes no

Table 5.1: Overview of atlas CTs used for evaluation

The post-processing and analysis of the generated pseudw&sTaccomplished by taking
advantage of the capabilities of a prototyping environmdiitis Image Processing and Proto-
typing Environment (IPE) was developed by the author of tlhekvat hand while working as a
student assistant at the Chair of Pattern Recognition. Itlesalbe creation of image processing
networks consisting of data processing modules, which e@ae Imputs, produce outputs and
are controlled by adjustable parameters. The main applicaf the IPE is the IPE Network
Editor, a graphical user interface for creating, editirapfayuring and executing such networks.
Having an IPE network defined and stored as network desmnifite, another application, called
IPE Network Runner, can be used to execute the network froradimenand line with specified
parameters passed as command arguments. Moreover, a fdudgnSpace 2008 exists, that
integrates the IPE into InSpace.

Applying the introduced materials and methods, the evalnattudies basically complied
with the following protocol. First, the co-registered MRage of the patient whose PET data
is to be corrected and a CT image manually selected from the I3 ate loaded in InSpace.
Optionally, the atlas CT image is manually cropped such tatémplate CT used for the CT
prediction covers only the body part pictured by MRI. Nexg template CT is automatically
pre-registered with the MR image using the rigid registraiplugin, with manual adjustment if
needed. Then, the plugin for logging the parameters andltlggnpfor sampling intermediate
and final results are configured and attached to the mainmplu@ihe reference and template
are now imported and pre-processed by the main plugin asideddefore, whereby the im-
ages are downsampled to reduce the complexity of the nampric registration. Then, the
non-parametric registration is performed and the regstéemplate is optionally upsampled
afterwards. To visually assess the resulting pseudo CT filzaded in InSpace.
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(c) Atlas 3

Figure 5.1: Example slices of the atlas CTs used for evalnatio
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5.2 Results

As there was only appropriate data of PET-CT and MRI acquisstaff a single subject available,
the evaluation was based on just one brain imaging studytefdre, the quantitative measure-
ments have minor statistical meaning. They are computesisiesa the results of the investigated
study not only visually and, nonetheless, underline thefoodconcept. Clearly, the evaluation
can demonstrate initial results only but no conclusiveestaint about the reliability or robustness
of the evaluated method can be made. However, the feagibilihe method can be delineated
to some degree. Example slices of the brain CT, MR and PET isnaQthe patient used for
evaluation are drawn in Figure 5.4.

Pseudo CTs were generated using each of the three atlas CTisaoima@as template. Com-
mon parameter settings for the pseudo CT generation areedil what follows, s.a. Table 5.2.
The reference MR and template CT were downsampled to an images128 x 128 x 128,
matching the resolution to 1.96 x 1.96 x 1.74 frVloreover, the non-parameteric registration
was performed on four levels with a maximum of 20, 15, 10 angfitions at each according
level. Another stopping critera was a minimum absolute e/atithe distance measure, termed
minimum delta, of 1§. The number of histogram bins used to determine the histogfadis-
crete intensity values was equal 64 and the width of the Gaugernel functions used for the
density estimation was set to two times of the width of a @rgstogram bin. Afterwards, the
generated pseudo CTs were upsampled again to match the dizesatution of the actual CT
of the patient.

The parameter that influences the registration result at imdise amount of regularization,
the value of the stiffness parameter, accordingly. Theeegfthis parameter was adjusted in a
first evaluation study with one common atlas CT as templatetlaadifferent resulting pseudo
CTs were compared both to the gold standard and to each othdetermining the range of
appropriate values for the stiffness of reasonable defiooma For that reason, mean absolute
value differences were computed and assessed both visumllguantitatively. For the compu-
tation of the difference image between a specific pseudo CTrendctual CT, the images were
resampled on a common grid with a uniform spacing of 1 x 1 x 13 pmesulting in a size of
249 x 249 x 222. Furthermore, the background of both was narethin the following sense.
All intensities of the pseudo CT that had a value below a tholeksbf -750 HU were set to
-1024 HU, the intensity value corresponding to air. Thehin&nsities in the actual CT, where
the corresponding intensities in the pseudo CT showed tlekigbaund value were also set to
-1024 HU. This way, both images comprised the same foregroegion with removed back-
ground noise, while especially the borders of the pseudo Q€ wet defined after deformation.
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Another reason for this was that the actual CT pictured alscsttanner table while the atlas
CTs did not. By applying the mentioned steps, this table wa®vechfrom the actual CT, too.
Otherwise, it would have caused high differences, miskeathe computation of the mean value.
Figure 5.5 plots the set values of the stiffness parametéretaorresponding mean normalized
difference value. However, the mean absolute differend@egawithout this normalization are
given for comparison reasons as well in Figure 5.7. Moreoagrbone contributes consider-
ably more to attenuation especially in PET, Figure 5.6 plogsmean difference value that was
computed by ignoring the intensities below 0 HU. From thdegspit can be concluded that the
stiffness parameter value should be chosen within the rahge to 30.

After the range of appropriate stiffness parameter valassheen investigated, the stiffness
parameter for generating pseudo CTs using all three atlas €Tengplate was set to 22.5, as
this value obtained the best mean normalized differenagevialr the atlas CT Atlas 1. Example
slices of the resulted pseudo CTs are shown by Figure 5.8. dvergFigure 5.9 illustrates
the normalized difference relative to the actual CT of thegmat where the images are drawn
inverted to improve the contrast. Additionally, the meafietiences of these pseudo CTs are
summarized in Table 5.3. Thus, the mean of the mean norndadifference values is 40.9 HU,
which is decisively better than the average absolute ealoievof 100.7 HU reported by Hofmann
et al. [21] on their pseudo CT prediction method. Even if tratue is compared to the non-
normalized difference values, except the one of the pseudgef&rated from the atlas CT that
comprises the upper half of the head only, it shows that thennoé the mean difference values
of the other two pseudo CTs is lower than the one reported bgutiers. However, it has to be
emphasized that only three pseudo CTs were generated, whellgas been used to determine
the optimal stiffness parameter. Moreover, these pseudoneiies generated for a single patient
compared to the 17 patients envolved by the evaluation ofrtdah et al.
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pre-processing

size 128 x 128 x 128
pixel spacing (mm x mm) 1.96 x1.96
slice thickness (mm) 1.74

non-parametric registration

number of levels 4
maximum iterations 5
minimum delta 10°
number of histogram bins 64
kernel width 2.0

(relative to histogram bin width

post-processing

size 512 x 512 x 148
pixel spacing (mm x mm) 0.94x0.94
slice thickness (mm) 15

Table 5.2: Common settings of pseudo CT generation

atlas CT Atlas 1 | Atlas 2 | Atlas 3
mean normalized difference (HU) 45.41 | 46.98 | 30.26
mean water/bone mixtures difference (HU)29.73 | 28.80 | 30.26
mean difference (HU) 89.66 | 90.10 | 166.43

Table 5.3: Mean differences of pseudo CTs generated fronintbe tlifferent atlas CTs, with the
stiffness parameter set to 22.5
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(a) CT image

(b) MR image

(c) non-AC PET image

(d) AC PET image

Figure 5.4: Example slices of the brain images of the patieat for evaluation, where the MR
image was rigidly registered with the CT image
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(a) Pseudo CT generated from atlas CT Atlas 1

(b) Pseudo CT generated from atlas CT Atlas 2

(c) Pseudo CT generated from atlas CT Atlas 3

Figure 5.8: Example slices of the pseudo CTs generated frenditferent atlas CTs with the
stiffness parameter set to 22.5
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(a) Difference image of the pseudo CT generated from atlag(zB 1

(b) Difference image of the pseudo CT generated from atlag\=s 2

(c) Difference image of the pseudo CT generated from atlag\(Gis 3

Figure 5.9: Corresponding normalized difference imagel®pseudo CTs in Figure 5.8 relative
to the actual CT of the patient



Chapter 6

Outlook

The employed approach for MRI-guided attenuation corractegjuires a reliable and locally
precise deformable intermodality intersubject regigirat More precisely, the deformable reg-
istration adapted for the evaluated method is a non-paranate that does pose the least of
all assumptions on the transformation, thus, it providestiost flexibility for the atlas registra-
tion. On the other hand, this makes it being quiet prone tarfttansformations that yield a
pseudo CT which is unlikely a reliable prediction of a transsran scan of the patient’s anatomy
especially in regions such as the trunk.

The transformation is only restricted by the regularizeigeve the amount of regularization
is spatially constant. However, as the anatomy varies mos®ine regions than in others, a
locally differing regularization of the transformationahd yield more reliable transformations,
while introducing this type of prior knowledge. Moreoves, the pseudo CT strongly depends
on the atlas CT used as template, a template selection stratech determines an atlas CT that
sufficiently corresponds with the patient is essential.

Otherwise, Hofmann et al. [20] showed on the Joint Molecuizaiging Conference 2007
the reliability of a CT prediction for brain studies based @fodmable B-Splines registration,
where local inaccuracies of the registration were all@datombining several atlas registrations,
also getting rid of the need for template selection whilengshe anatomical information of all
atlas CTs. Therefore, the combination of the various regadtatlas CTs was not just done by
averaging, but a more sophisticated regression techriigai@troduces pattern recognition to at-
tenuation correction. An article on their method, alsoHartinvestigated in order to augment its
applicability to whole-body studies, was most recentlymiited by Hofmann et al. [21], where
the combination of atlas registration with local pattercognition is illustrated in more detail.
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The results of the various atlas registrations are incaedras prior knowledge in the following
prediction on the basis of pattern recognition methods. ofdiog to Hofmann et al., pattern
recognition methods for predicting a pseudo CT are motivaiethe idea that, while the MR
intensity at one spatial location does not contain sufficieformation to uniquely determine
its tissue class, its neighborhood, however, may add sor@cteristic information. This may
be particularly useful when distinguishing between boné ain as the MR intensity in both
cases is near zero. Pattern recognition methods theraforat@etermining a mapping between
the intensities of a rectangular patch of the MR image cdrdteghe spatial location of interest
and real-valued CT intensities. A training database is ecetbm the matching co-registered
atlas MR-CT image pairs and the mapping is obtained by solviregeession problem, where
Gaussian Process regression as described in [21] was ugbd Aythors. Finally, the obtained
mapping is just applied to the MR image of the patient to gefaeudo CT out of it.

Thus, opposed to the pre-selection of a specific templaten@pseudo CT generation based
on non-parametric registration could, according to theho@t{proposed by Hofmann et al., be
carried out for each atlas CT individually followed by regries to tickle the best local fit out of
each individual registration. To be able to learn the regjossfunction, however, initial values
and target values have to be known for the training datab&bkerefore, the CT atlas has to
be replaced by an atlas consisting of matching MR and CT imagesing up with almost
the method proposed by Hofmann et al. with the B-Splines tregisn substituted by a non-
parametric one.



Chapter 7
Summary

The concept of predictive health promotes the goal to detedttreat disease even before it
has ever been expressed. Therefore, different imaging litiedaisualize different aspects of a
disease in a non-invasive way.

Molecular imaging modalities applied in nuclear medicise tracers of metabolic processes
to uncover their spatial distribution within the body. Téfare, the subject has been injected
with, has ingested or has inhaled a labeled tracer thattemd@hotons. Detectors collect the
endogeneous photons from outside the body, whereby theumeebsadiation is directly related
to the imaged physiology. The kind of imaged physiology aelseon the applied radiopharma-
ceutical. Tomographic imaging modalities such as SPECT &Tddnable the reconstruction of
the spatial distribution of radioactivity.

Besides the functional information gained by ECT, anatomidalmation is often needed to
clarify the nature of an abnormality and to help diagnosdagesthe underlying disease. Hence,
dual-modality imaging is nowadays the prior art in nucleadmine, where in particular SPECT
or PET is combined with CT. This enables a reliable localarabf radiopharmaceutical uptake
or guides surgery in areas where vital structures neighlsgade or in anatomically complex
regions. A major drawback of the combination of ECT and CT isgbgquential rather than
simultaneous acquisition which frequently introducesregsstrations due to improper patient
positioning, respiratory motion and other voluntary pattimovement. Moreover, CT gains few
soft-tissue contrast and subjects the patient to additracization dose.

Contrary, MRI generates high resolution images that yieltebsbft-tissue contrast and es-
pecially a large variety of tissue contrasts. Moreoverpgginot require any ionizing radiation
and therefore can be used without restrictions in situatwimere radiation exposure is a concern.
Thus, the development of hybrid PET-MRI systems is currentjyrogress. Those systems will
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unify PET, MRI, fMRI and MRS, which may have even more potentsatarrent PET-CT sys-
tems. Despite the difficulties that still have to be solvedt fiuman brain images captured with
a prototype PET-MRI system already demonstrate the feagibflthis promising combination.

The photons emitted by the radiopharmaceutical interattt the different tissues while trav-
eling through the body. The probability that a photon wildengo an interaction while passing
through a unit thickness of tissue is called attenuatiorificoent. It is not only dependent on
the tissue type but also on the photon’s energy. At the phetangies encountered in ECT, the
major interactions are photoelectric absorption and Comptattering, whereas especially in
PET Compton scattering dominates considerably. Both abearphd scattering are the com-
ponents of the general process of photon attenuation. Tidafuental relationship of scatter
to attenuation can be summarized as follows. An absorpbotributes only to attenuation, but
scatter increases attenuation and also sets up a poteatigdrscorruption. Attenuation and scat-
ter have opposite effects on activity quantification in tese that photon attenuation decreases
counts, thus allowing too few photons to be detected, rieguib underestimation of activity.
In contrast, scatter corruption increases counts, thosvaily too many photons to be detected,
resulting in overestimation of activity. Both attenuatiamdascatter cause serious artifacts in
the reconstructed images, making it difficult or even imgaedo read the images properly and
to make a reliable diagnose. Particularly, if quantitatwvelysis of the physiologic process is
desired, compensation for photon scatter and attenuatiorandatory.

To enable the compensation for scatter and attenuatiospttél distribution of attenuation
coefficients has to be known. This knowledge can then bereiticerporated into an iterative
reconstruction algorithm or the emission data can be ctateexactly before the actual recon-
struction in PET as the attenuation of photons in PET is ieddpnt of the point of emission.
Thus, attenuation correction strategies try to deterniiraattenuation map which represents the
spatial distribution of attenuation coefficients. The prwot of these methods are calculated,
transmission-based, atlas-based or MRI-guided methods.

Calculated approaches try to determine the body contour fhenemission data alone and
then assign a uniform distribution of attenuation coeffitseto the inside of the body. As the
resulting attenuation map is uniform, these methods arg ampropriate for brain studies but
more adequate methods must be performed where the atemgagfficient distribution is not
known a priori and also for regions of inhomogeneous attemmaTo account for the consider-
able higher attenuation of the skull, a larger coefficiemtloa assigned within a certain thickness
of the outline or by estimating the skull boundary from anamected reconstruction.
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The most accurate attenuation correction methods are thsured methods that apply an
additional transmission scan of the patient.

In radionuclide transmission imaging an external sindletpn or positron emitting source
is placed on one side of the patient and a detector on the sithermeasures the transmitted
photons before, during or after emission scanning. Thenadtiton map can then be recon-
structed from the natural logarithm of the blank-to-traiised sinogram ratios, where the blank
scan is performed while no patient is present in the FOV. Tuce the total acquisition time
in sequential transmission imaging, short transmissi@amsare usually done, increasing noise
in transmission images and therefore introducing noiséencorrected emission images. Sev-
eral approaches such as the segmentation of the recoestraiteénuation map and non-linear
filtering have been proposed to reduce the noise. Usingesjoighton emitting sources also in
PET made simultaneous transmission-emission imaginglpgesshich has proven to be very
practical especially in whole-body oncology studies. WHea gthoton energy in transmission
imaging is not the same as in emission imaging, which is alerly the case in simultaneous
transmission-emission imaging, the reconstructed adtgmumap has to be properly scaled.

CT-based attenuation correction is the method of choiceyforitt ECT-CT systems. The ad-
vantages are the high resolution transmission images witthrfower noise, the short transmis-
sion times and that itis no longer necessary to include eateadionuclide sources. However, as
the X-ray source emits photons which cover a relatively Breergy spectrum compared to the
mono-energetic photons emitted by the radiopharmacéutieatranslation of measured attenu-
ation coefficients to the emission photons’ energy is moifecdit. Basically five methods have
been proposed: segmentation, uniform scaling, bilineairey, hybrid segmentation/scaling and
dual-energy decomposition. The bilinear scaling is cutyghe most widely applied method. It
can be considered as combining an air/water mixture mod€Tonumbers less than zero and a
water/bone mixture model otherwise.

Atlas-based methods try to derive the attenuation map froatlas of attenuation coefficients
scaled to the appropriate photon energy. This is accongalibly anatomic standardization using
deformable image registration. A conceptual limitationpobposed approaches is that exist-
ing patient-specific anomalies cannot be modeled in an ab&sned from a single or even an
average representation of the population.

The goal of MRI-guided attenuation correction is to derive @ttenuation map from an MR
image of the patient whose emission data is to be correcteid.Kind of attenuation correction
is very attractive for hybrid PET-MRI systems. However, thaimdifficulty is to find a map-
ping between the non-standardized, by means of magnetkifiebmogeneities distorted MR
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intensities and the appropriate energy-dependent atienuzoefficients. Because of that, few
publications addressed this type of non-uniform atteonatiorrection so far. Three different
approaches have been proposed: a segmentation-based@dp@mMRI-guided atlas-based ap-
proach and most recently an approach that combines pa#teogmition and atlas registration,
The method evaluated in this work follows the second.

The evaluated approach for attenuation correction predictX-ray transmission scan of the
patient based on the anatomical information provided by MRErefore, CT numbers are ob-
tained from a suitable atlas CT using non-parametric imagistration with mutual information
as distance measure and regularized by curvature. Thelrkkmein CT-based techniques to de-
termine the attenuation map from the generated pseudo CTecaypgdbied. The common bilinear
scaling method is suggested to be used to translate the CTansmakproperly scaled attenuation
coefficients. The flow of data and the steps deployed to dé@terthe patient-specific attenuation
map from the co-registered MR image are summarized in Figure

The evaluation was performed with visual assessment andtitptave analysis. The CT
prediction was in the spotlight of this evaluation, sincegleneration of the attenuation map from
a CT image of the patient is yet commonly applied by hybrid RHTsystems. To maintain the
evaluation, a protocol was defined and an evaluation toatkitimplemented. The CT prediction
was adapted for evaluation as there was no PET-MR scanniaitdea Instead, clinical data
acquired on a PET-CT and a stand-alone MR scanner were usede Wie MR image was
rigidly registered with the CT of the PET-CT image pair to aligwith the PET data. As only
few studies with a PET-CT and an appropriate MR scan of the gatient were available during
this work, the evaluation could only be carried out for a Brigain study. First, the optimal value
for the stiffness parameter of the applied non-parametgcstration algorithm was determined
by quantitative analysis of the mean differences. Thederdifices were computed for pseudo
CTs generated from the same atlas CT but with varying stiffrfesseach of these pseudo CTs,
a mean normalized difference value was obtained in the sbas¢he background of both the
pseudo CT and the actual CT was matched and intensities belowea threshold were set
to -1024 HU. It turned out that the optimal stiffness parandies in the range of 20 to 30.
Consequently, a stiffness parameter of 22.5 was used foolllog/ing generation of pseudo CTs
from the available atlas CTs. The mean of the mean normalidfeslahce values of the pseudo
CTs was 40.9 HU.

To improve the results of the non-parametric registratfgmgr knowledge in the form of
locally dependent regularization could be implementetkss of just a global degree of regu-
larization, considering that anatomy varies in some regimore than in others. Moreover, to
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predict a CT of the patient more reliable and robust and ogptusthe pre-selection of a specific
template CT, the pseudo CT generation based on non-paramegigtration could be carried
out for each atlas CT individually followed by regressionitklie the best local fit out of each
individual registration. To be able to learn the regresgiorction, however, initial values and
target values have to be known for the training database.
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Appendix A

Related Patents

While methods for scatter and attenuation correction ofrgid and most recently developed
methods are considered in chapters 3 and 6 and while the MigégCT prediction method
evaluated in this work is yet concisely compared to theseagmimes where reasonable, patents
and patent applications of the most similar ones of thesbadstare delineated in this appendix,
where the evaluated method is distinguished from the cldimethods.

The atlas-based IAD method for scatter and attenuatioecton introduced in section 3.3.1
was disclosed through the patent application [46] and isepted by the European patent [47]
and the United States patent [54]. These patents proteictdhef using a computer model of the
density distribution within the region of interest alignedh the emission image to guide scatter
and attenuation correction. In general, the claimed metiooaprises the steps of aligning a 3D
computer model representing the density distribution withemission data and applying scatter
and attenuation correction using the aligned computer hrela guide. In particular, the used
computer model is in the form of an atlas that consists of tammmonents, a functional and an
anatomical one, where the functional component is usedifpriag the atlas with a preliminary
reconstruction of the emission data and the anatomical oaerg simulates a transmission scan
used for scatter and attenuation correction. Althoughafiproach evaluated in this work as well
comprises atlas registration to align a transmission s¢tntiae emission data, the alignment is
carried out by registration of the atlas with an alreadyegistered MR image and not by direct
alignment of the atlas with the emission data to be correciéals, even though the presented
approach is similar to the patented method, actually, tieghod is not claimed by these patents.
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Krieg et al. have submitted the patent application [31] ditlproposed NM-MR atlas
method introduced in section 3.4.2, which was approved aett tnethod is now protected
by the United States patent [32]. This method adapts andlrearegistered MR image of the
patient for atlas registration, where the atlas again st&sif two components, a reference MRI
acquisition and a correction data set, that are connectegicto other either directly or indirectly.
If connected directly, the reference MR image and the ctmeclata set are stored in a common
matrix, thus, a data point of the correction data set is assigo each data point of the MR
image. Otherwise, if the data sets are connected indirdotigrvals of MR intensities of the
reference MR image are mapped to specific correction validesie the mapping is determined
by classification of the reference MR intensities into mdsly tissue types and then assign-
ing known correction values to each tissue class. AdaphiggNM-MR atlas for MRI-guided
attenuation correction, the reference MR image is regadtarith the MR image of the patient
and the obtained transformation is then applied to the cboredata set. Although the evaluated
method is quite similar to the method protected by the pd&?jtwith the correction data set
consisting of proper CT numbers, the evaluated method debysiiscriminates itself by means
of the determination of the transformation that aligns tiamsmission component of the atlas
with the emission data. Whereas this transformation is oeterd adapting an NM-MR atlas
and MR-MR registration in case of the claimed method, it iedatned by direct registration
of the transmission atlas with the MR image of the patientasecof the evaluated method.
Therefore, the reference MR image is no longer needed andah tiansmission atlas remains.

There was also a patent application submitted by Pichlet. ef48] regarding their most
recently published MRI-guided method for scatter and a#i&on correction introduced in the
outlook. Unless this method applies MRI-guided atlas regfistn and a prediction of a pseudo
CT of the patient as well, it predicts the pseudo CT more saphistd adapting also pattern
recognition methods compared to a usual atlas registrasoapplied in case of the evaluated
method. In particular, the perspective is turned on a pdimteav that centers on finding a map-
ping between MR intensities and real-valued CT numbers ysatigern recognition techniques
such as Support Vector Machines to solve the regressiongmo hereby, the atlas registration
with the MR image of the patient is adapted to gain some kingriafr knowledge that can be
considered while building the training data set for deteing such a mapping.
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