Sparse Axes-aligned MFlux
An Efficient Alternative to Spherical Flux

A. Schuh', J. N. Kaftan?, C. Tietjen?, and T. P. O’Donnell*

! Section of Biomedical Image Analysis, Department of Radiology, University of
Pennsylvania, Philadelphia, PA 19104, USA
2 Siemens Magnet Technology, Science & Technology, Whitney OX29 4BP Oxon, UK
3 Siemens Healthcare Sector, Computed Tomography, 91301 Forchheim, Germany
4 Siemens Corporate Research, 755 College Rd East, Princeton, NJ 08540, USA

Abstract. The spherical flux image feature (Fluz) serves to enhance
tubular objects. Non-linear variants of Flux (e.g. M Flux) significantly
extend its power but are too computationally expensive to be applied to
an entire image volume. Recently, a Fourier-based formulation of Flux
(FastFluz) was introduced which, however, must be run on an entire
volume. It is unclear how to (or whether it is even possible to) incorporate
non-linear characteristics. In this paper, we introduce a novel approach
to flux computation which is based on two remarkable insights: First,
by approximating the sphere with integral-valued vector samples, we
gain a significant speed-up with only a minor degradation in response.
Second, computing M Flux on 3 rings aligned with the coordinate axes
yields results similar to those of Flux. The combination of these two
insights yields “Sparse Axes-aligned MFlux” (SAM Fluzx) which is faster
than FastFluxz. We demonstrate the capabilities of SAM Flux in the
challenging domain of liver vessel segmentation with excellent results.
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1 Introduction

Flux may be defined as a scalar which describes the strength of a vector field
passing through a given surface in the direction normal to that surface. In the
context of image segmentation, flux is often thought of as a feature which high-
lights the centerlines of tubular objects. In this case, for a given voxel, the surface
is a ball with the voxel at its center, and the vector field is the image gradient.
The flux response has a large magnitude when the ball lies on the medial axis,
its radius is the distance to the wall, and the image gradient is strong. If the
radius of the tube is not known, flux must be computed on multiple scales.
Since its introduction in the vessel segmentation community by Vasilevskiy
and Siddiqi [10], (multi-scale) spherical flux (Fluz) has enjoyed popularity and
spawned several variants (e.g., CFlux and M Fluz [9], OOF [7]). However, these
variants are computationally expensive and therefore have been primarily em-
ployed as needed in tracking applications, as opposed to being evaluated over



an entire image volume. Law and Chung [8] proposed a much faster method for
computing Fluz in the Fourier domain (FastFlux). However, their approach
requires flux to be computed over the entire volume and it is unclear if it can
incorporate the powerful features that distinguish the variants above (e.g., the
non-linearity of M Fluz).

In this paper, we introduce a novel non-linear method for flux computation,
“Sparse Axes-aligned MFlux” (SAM Flux) which is faster than FastFluz and
could be run on an entire volume. However, it is computed in the spatial domain,
and therefore can be run in selected regions only. SAM Flux is based on two
unexpected observations: First, by replacing real-valued vectors sampling the
surface of the sphere with rounded-off integral-valued vectors, we benefit from a
significant speed-up in computation with minimal loss in response. This is due
to the redundancy in the resulting samples and the elimination of the need for
interpolation. Second, computing flux over 3 rings (great circles on the sphere)
aligned with the coordinate axes yields similar results.

We establish the speed and effectiveness of our observations by applying it
to the challenging domain of liver vessel segmentation. The vessels of the liver
perfuse through the entire organ and are manifold in number; a typical venous
CT Angiography (CTA) of a liver highlights well over 100 vessels of varying sizes.
We applied our method to the entire liver (and only the liver) and compared it
to Fluz (and FastFluz) and its variants CFlux and M Fluz.

2 Related Work

The vessel-enhancing features in the literature fall broadly into three categories:
hessian-based, ray casting-based, and gradient-based (see [9] for an excellent
overview of this topic). The hessian-based methods [2] have the disadvantage
that they are sensitive to noise. This is due to the potential inclusion of neigh-
boring structures from the computation of second derivatives. In addition, eigen
decomposition for those methods requiring it is computationally expensive. The
ray casting-based techniques [3] have high accuracy, but generally also require
long computation times. The last category contains Flux and its variants.

Flux and its variant CFluxz may be described by the same equation (1).
While Fluz is evaluated over a sphere (cf. Fig 1b), CFluz is evaluated over a
ring (cf. Fig 1c). CFlux was designed for tracking: the intention is to evaluate it
in directions, d, to determine the local path of the tubular object. At position,
p, Fluz or CFlux may be written as (ignoring d for the Fluz formulation)

(C)Fluz (p;d,r) = % i <VIU (p + :n;“) , —ng’r> (1)
i=1

1=

where VI, is the image gradient at a scale o and N the number of “boundary
samples”, (x, n)g’r, where « is the boundary offset relative to the center of the
sphere with radius r and n is the outward surface normal (cf. Fig 1a).

M Fluz (the “M” stands for minimal) was designed to avoid high flux re-
sponses when only one side of the ring was in contact with a gradient (this could
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Fig.1: (a) Components of Eqs 1 & 2. (b) Flux. (¢) CFluz. (d) SAM Fluz.

happen when that gradient was very strong). Therefore, the M Flux score is the
sum of the minima of the pairs (VI, (p + ), —n) on opposite points. In this
sense, it may be considered non-linear. M Flux may hence be written as
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3 Method

We introduce two approaches for increasing the efficiency of flux. The first applies
to any non-Fourier-based flux feature, for example, Fluz, CFlux, or M Fluzx.
In this first approach, as opposed to conventional flux, we replace real-valued
offsets x by integer-valued offsets & corresponding to the nearest voxel positions.
Normals, n, with values equal to specific «’s are recomputed as n = &/||Z||.
This discretization of offsets and normals results in different values of (x,n)
rounding off to the same values (&,7). The resulting redundancies may come
from the different positions on the same sphere (ring) or even different spheres
(rings). Therefore, we identify the set of “unique boundary samples”, (&,n),
for a particular p and compute the dot products at these samples only once.
Most often, this reduces the number of dot product computations significantly.
The computation of flux is now divided into two steps as shown in Alg 1: Step
1, the computation of dot product values; Step 2, the evaluation of the sum in
either (1) or (2) at different scales, r (and in multiple directions, d, for CFlux or
MFlux). For each discrete sample (&, ﬁ)g"r, a reference to the memory for the dot
product value, dpy, to be evaluated at the unique sample (&, 2); with equal offset
x is reserved. Another advantage over the conventional implementation is that
Step 1 can easily be accelerated using Single Instruction, Multiple Data (SIMD)
operations such as the Streaming SIMD Extensions (SSE) [4]. This allows the
evaluation of four dot products at a time.



Alg. 1 Efficient Implementation for Flux Computation.

// Step 1: Evaluate dot products (four at a time using SSE).
for each unique boundary sample (x,n), do
dp, = (VI (p + xk), ni)
(dpg, is stored in pre-allocated list)
end
// Step 2: Evaluate flux.
flux (p) = —c0
for each direction d and radius v do
tmp = (C|M)Fluz (p;d,r)
(where the in Step 1 (pre-)computed dot product values dpsx are used)
if tmp > flux(p) then
fluz(p) = tmp
end
end

The second approach to increase the efficiency of flux applies to Flux (as well
as CFlur and M Flux when the latter two are evaluated in multiple directions
to cover an entire sphere). By evaluating flux in just three directions aligned with
the coordinate axes, we are able to achieve results similar to a more densely sam-
pled evaluation. Therefore, we define a new variant of Flux named SAM Fluzx.
In order for it to be robust against noise and the presence of other, non-tubular
structures, we utilize the non-linear M Flux and thus write SAM Flux as

SAMFluz (p;r) = max  MFlux (p;d,r) (3)

def{es,ey ez}

where e, ey, and e, are the orthogonal basis vectors of the Cartesian coordinate
system of the image volume. In other words, SAM Flux is the M Fluz feature
(with integral vector efficiencies described above) evaluated in the axial, coronal,
and sagittal viewing directions, where the three oriented responses are combined
using the maximum operator. Multi-scale SAM Flux calculated over a set of
radii R is computed as

SAM Fluz (p) = max SAM Flux (p;r) . (4)

reR

4 Results

We evaluated the flux-based features at multiple scales (radii 2, 3, 4, and 5 mm)
on 43 CTA liver datasets of varying quality, extent of disease, and protocol. All
scans were routinely acquired on Siemens equipment at different clinical sites.
Slice thickness ranged from 0.8-1.5 mm. We computed all gradient images at
a scale o of 2 mm after the liver was segmented and areas of liver lesions and
intense Lipiodol uptake were removed automatically [5]. Fig 2 compares the
feature responses on an exemplary coronal slice, where 39 orientations, d, were



considered in case of C'Flux and M Fluzx. It is clearly observable that SAM Flux
is similar to Flux, but is more concentrated near the medial axis.

Fig.2: (a) Image intensities (with lesion near bottom removed). (b) Maximum
Fluz. (¢) Maximum CFluz. (d) Maximum M Flux. (e) Maximum SAM Flux.

To judge relative speed, we compared running times measured for 10 volumes
on a machine equipped with an Intel Xeon X5570 CPU and 18 GB of RAM.
Running times of the conventional implementation (which tri-linearly interpo-
lates the gradient field) and our proposed implementation (which uses integer-
valued boundary offsets and no interpolation) are summarized for the different
flux variants in Table 1b. Table la demonstrates the reduction in the number
of dot product computations when employing our proposed efficiencies. Table 2
compares the running times of our proposed implementation of Flux to both the
conventional implementation and FastFlux. It is important to note that both
our proposed and the conventional implementation are run on the liver only, pro-
cessing whole slices by separate threads, whereas the Fourier-based FastFlux
needs to be computed over the entire volume (i.e., the bounding box of the liver).

conventional|proposed feature PI | CI % -100%
3058 750 Flux 0.4438(2.495| 17.79%
839 623 CFlux 1.975 |20.52| 9.625%
445 415 MFlux 2.160 (23.01| 9.387%
248 232 SAMFlux|0.2582(1.623| 15.91%

(a) (b)

Table 1: (a) The number of dot product computations necessary when using
our proposed approach versus the conventional approach. (Total numbers of
boundary samples on spheres with radii 1, 2, 3, 4, and 5 mm sampled with
different accuracies; voxel size 1x1x2 mm?.) (b) Running times (in seconds) per
512x512 voxels based on proposed (PI) and conventional (CT) implementation.

Having established the speed of SAM Fluz, we turn our attention to evalu-
ating the relative quality of its response. We performed an assessment of feature



volume size voxel size total running times
[mm?] PI | FI | CI ||£-100%|%% - 100%

224 x 289 x 189(0.71 x 0.71 x 0.80(|7.137|20.97|35.20|| 34.03% | 20.28%
240 x 286 x 195(0.69 x 0.69 x 0.80(|7.565|18.49|36.88|| 40.91% | 20.51%
316 x 289 x 162(0.64 x 0.64 x 0.99(|8.731|26.64|44.08|| 32.77% | 19.81%
339 x 255 x 189(0.66 x 0.66 x 0.90(|8.811|27.09|38.96|| 32.52% | 22.62%
325 x 258 x 197|0.65 x 0.65 x 0.80(|9.559|28.56|42.75|| 33.47% | 22.36%
290 x 245 x 229(0.71 x 0.71 x 0.92(|9.378|38.27|45.81|| 24.50% | 20.47%
274 x 252 x 222|0.66 x 0.66 x 0.80((9.201|29.44|47.11|| 31.25% | 19.53%
297 x 267 x 241|0.66 x 0.66 x 0.80(/10.49|35.16|54.83|| 29.84% | 19.13%
354 x 273 x 190{0.53 x 0.53 x 0.80(|11.52|37.29|58.12|| 30.89% | 19.82%
348 x 247 x 204|0.59 x 0.59 x 0.84(/10.28|35.03|47.78|| 29.35% | 21.52%

average|| 31.95% | 20.61%

Table 2: Running times (in seconds) for Fluxz computation based on proposed
(PI), conventional (CT), and FastFlux implementation (FT).

responses on a centerline level and used expert annotated centerlines as ground-
truth from 43 datasets. In the following, we denote the annotated centerline of
a dataset by A, the set of voxels which represents it in the image domain.

For each dataset and flux variant, we thresholded the feature response volume
to remove the worst t-100% of positive responses, and varied ¢ to obtain different
binarizations. For each binarization, we computed a skeleton S; of voxels using
a thinning method [6] and compared it to the reference skeleton A. We therefore
determined for each voxel p € S; the distance da(p) = infgea d(p, q), where
d(p, q) is the Euclidean distance, and similarly for each voxel g € A the dis-
tance ds, (q) = infpes, d(p, ). Given these minimal distances and a maximally
tolerable distance d,;,q; of 2 mm, we determined the numbers

TP = |{p Sy | d.A(p) < dmax}|
FP,=|{p € St|da(p) > dmas}|
FN; = |{q €A | dSt(Q) > dmam}l

(true positives),
(false positives),

(false negatives).

Note that a number of true negatives cannot be defined properly as one-voxel
wide skeletons are compared. Therefore, we used the traditional effectiveness
measures precision (positive predictive value) and recall (true positive rate) to
compute the Fi-score of S; (extracted by the given feature from the current
dataset) [1]. We determined an average Fy-score for each feature and each thresh-
old t by averaging the numbers given by (5), (6), and (7) over all datasets.

The obtained average F1-score of SAM Fluz is plotted over ¢ in Fig 3. The av-
erage Fi-scores achieved by the conventional implementations of Flux, C' Flux,
and M Flux are shown as well for comparison, where 39 orientations, d, were con-
sidered in case of C Flux and M Flux. From Fig 3 it is noticeable that SAM Flux
is similar to Fluxz. SAM Flux obtains its maximum of 0.73 at t = 92% and Flux
its maximum of 0.72 at ¢ = 91%. It can be observed that SAM Fluz achieves
better results for ¢t < 92% than CFlux and M Flux. This shows that SAM Flux



is less dependent on ¢, which in turn is an indicator of its strength as a vessel
discriminator. These observations agree with Fig 2, which suggests that C Flux
as well as M Flux suffers more from noise. Based on our experiments, SAM Flux
is applied in the clinic with a value of t = 92%.
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Fig.3: Average Fi-scores (describing the average quality of the vessel discrimi-
nation) over a range of threshold values. Note that SAM Flux behaves similar
to Flux and only slightly worse than M Fluzx.

To also study the best possible discriminative behavior of each feature, we
compared the individual maximum F;-scores achieved by them. This corresponds
to having an optimal adaptive threshold selection method at hand, which would
determine for each dataset the optimal threshold ¢. Box plots of these maxima
are shown in Fig 4a. Again it can be observed that SAM Flux obtains an average
similar to Flux, but it is only slightly worse than M Fluxz and more robust than
Flux and the other variants. These observations are further emphasized by the
direct comparison of SAM Flux and Fluz in Fig 4b, where a positive difference
indicates SAM Flux’s advantage for the particular dataset.

5 Conclusions

In this paper, we presented a method for dramatically increasing the efficiency
of non-Fourier-based implementations of flux as well as a novel flux formulation
based on this termed SAM Fluxz. Our proposed implementation of Fluz [10]
was shown to run at 21% of the time needed for a conventional implementation
and 31% of the time needed for the Fourier-based FastFluz. Computation of
SAM Flux was found to require 0.26 sec on average per 512x512 slice while our
efficient proposed version of Flux required 0.44 sec. Yet, SAM Flux was found
to deliver comparable results and was slightly more robust to noise.

Our contributions allow for the inclusion of powerful non-linear characteris-
tics into flux and facilitate its application on selected regions of interest in an
image volume due to computation in the spatial (versus Fourier) domain. Given
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Fig.4: (a) Box plots of maximum F;-scores (describing the best possible quality
of the vessel discrimination). (b) Flux versus SAM Flux; a positive difference
indicates an advantage of SAM Flux, a negative difference an advantage of Fluzx.

the speed and quality exhibited, flux may now be applied over an entire image
volume thus opening up new possibilities for the segmentation of tubular objects
in a clinical setting.
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