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Abstract. Atlases of the human brain have numerous applications in
neurological imaging such as the analysis of brain growth. Publicly avail-
able atlases of the developing brain have previously been constructed
using the arithmetic mean of free-form deformations which were obtained
by asymmetric pairwise registration of brain images. Most of these atlases
represent cross-sections of the growth process only. In this work, we
use the Log-Euclidean mean of inverse consistent transformations which
belong to the one-parameter subgroup of diffeomorphisms, as it more nat-
urally represents average morphology. During the registration, similarity
is evaluated symmetrically for the images to be aligned. As both images
are equally affected by the deformation and interpolation, asymmetric
bias is reduced. We further propose to represent longitudinal change
by exploiting the numerous transformations computed during the atlas
construction in order to derive a deformation model of mean growth.
Based on brain images of 118 neonates, we constructed an atlas which
describes the dynamics of early development through mean images at
weekly intervals and a continuous spatio-temporal deformation. The evo-
lution of brain volumes calculated on preterm neonates is in agreement
with recently published findings based on measures of cortical folding of
fetuses at the equivalent age range.

1 Introduction

Brain atlases have numerous applications in neurological image analysis. Brain
templates and tissue probability maps are frequently used for image segmenta-
tion [9,10]. Deformations encoding the average brain growth of a population may
be analyzed to study brain development [1]. Only recently, spatio-temporal (4D)
atlases of the developing human brain have become available: Habas et al. [7]
created an atlas from 20 fetal Magnetic Resonance (MR) images from polynomial
fits for parameters which describe global scaling, local deformations, and inten-
sity changes. In contrast, Kuklisova-Murgasova et al. [9] used a non-parametric
kernel regression of affine transformations to build an atlas of the preterm brain.
This has been shown to improve intensity-driven tissue segmentation [9,10]. For
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other applications, such as structural segmentation and morphometry studies,
templates with a greater level of anatomical detail are typically required.

A spatio-temporal atlas of high level of detail was created by Serag et al. [18]
using pairwise free-form deformations (FFDs) [17] and kernel regression with
time as dependent variable. The individual brain images are therefore mapped
into the atlas space using the inverses of time-dependent average transforma-
tions which were computed in [18] based on the arithmetic mean of pairwise
FFDs. This limits the atlas construction to small deformations between images
as otherwise invertibility is not guaranteed.

A natural choice of average to represent mean morphology is given by the
exponential map of the arithmetic mean of stationary velocity fields. The veloc-
ity fields are the generating elements of the Lie algebra [2] corresponding to the
one-parameter subgroup of diffeomorphisms. We therefore propose an alternative
approach to [18] based on a FFD model parameterized by a stationary veloc-
ity field that generates transformations with guaranteed invertibility. Our atlas
construction is related to the kernel based shape regression proposed by Davis
et al. [6] in that we also use a kernel method to regress a spatio-temporal tem-
plate from cross-sectional images and use a diffeomorphic registration. Davis et
al. utilize a groupwise template estimation [8] that minimizes a single objective
function to find both the template image and the transformations which relate
the individual to this mean image based on the sum of squared differences (SSD).
In contrast, we first obtain the transformations which map each anatomy into
a common atlas space and then compute the template image. This allows us to
use different (dis-)similarity measures for the decoupled optimization problems.
In particular, to deal with the wide MR intensity variations associated with
myelination and other processes during early brain development, we compute
all pairwise inter-subject transformations using an efficient diffeomorphic regis-
tration based on normalized mutual information (NMI). Given the one-to-one
correspondences between the anatomies of different subjects of similar ages, we
then estimate a mean image. We estimate the mean image such that it minimizes
the SSD of the observations in the coordinate system, which requires the least
residual deformation to explain the anatomical variability across all individuals.

Previous neonatal atlas construction methods [9,18] focused on the creation
of age-specific mean brain templates with corresponding tissue probability maps.
While these methods allow the generation of mean images at high temporal reso-
lution, the resulting atlas only consists of cross-sections of the growth process. A
deformable transformation model, which encodes the longitudinal changes that
occur during a given time interval, would enable the analysis of the biological
processes that underlie these changes based on the deformations.

Lately, generative models for the study of time series data and spatio-temporal
atlas building based on an extension of the large deformation diffeomorphic metric
mapping (LDDMM)registrationhavebeenproposed [15,19].Thesemodels param-
eterize a time series of generally adult brain images by an initial image and ini-
tial momentum. Due to the significant age-related intensity variations, the time
series of neonatal mean brain images cannot be represented by a single deformed
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mean image. Instead, we propose to represent longitudinal change by exploiting
the numerous transformations between subjects of similar ages, computed during
the construction of the atlas. The proposed method allows the derivation of a mean
growth model from these transformations, without additional intensity-driven reg-
istration of the spatio-temporal atlas time points.

We provide qualitative evidence that the constructed atlas is of higher anatom-
ical detail than other state-of-the-art neonatal brain atlases and that our growth
model allows the accurate modeling of brain growth during early development.

2 Methods

2.1 Parametric Diffeomorphic Registration

The proposed spatio-temporal atlas construction method is based on pairwise
image registration as schematically illustrated in Fig. 1a. The brain MR images
are rigidly preregistered to a common image space. Registrations between all
pairs of images (Ii, Ij) are then carried out in two stages. First, an affine regis-
tration is performed, followed by an inverse consistent registration which finds
the spline coefficients of a stationary velocity field vij that minimizes the objec-
tive function. To avoid extrapolation of the initial global transformation outside
the finite control point lattice, we model the transformation Tij between an
image pair as the sum of global and local velocity fields

Tij = exp (vij) = exp
(
vglobal

ij + vlocal
ij

)
(1)

where vglobal
ij = log (Aij). The logarithm of the 4x4 homogeneous coordinate

transformation matrix, Aij , obtained by the initial affine registration, is com-
puted using a Padé approximation [5]. The velocity field vlocal

ij represents the
local deformation to be optimized in the second stage and is given by

vlocal
ij (x) =

m∑
c=1

β

(
x − xc

δx

)
β

(
y − yc

δy

)
β

(
z − zc

δz

)
ν
(c)
ij (2)

The m control points are defined on a regular lattice with spacing (δx, δy, δz)T ,
where x = (x, y, z)T and (xc, yc, zc)T is the position of the c-th control point with
spline coefficient vector ν

(c)
ij , and β(·) denotes the cubic B-spline function [17].

The use of a FFD model reduces the number of parameters of the stationary
velocity field to be optimized and allows the analytic derivation.

In order to remove bias due to the direction of registration, which can be sub-
stantial as shown for hippocampal volume measurements in [22], and to obtain
consistent pairwise transformations, we use a symmetric energy formulation.
Using normalized mutual information (NMI) as similarity measure, the energy
minimized by our registration with respect to the spline coefficients of the local
velocity field component of vij is given by

E = −λ1 NMI
(
Ii ◦ T−0.5

ij , Ij ◦ T+0.5
ij

)
+ λ2 BE (vij) + λ3 JAC (vij) (3)
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where
Tτ

ij = exp (τvij) (4)

The non-negative constants λ1,2,3 weigh the contribution of each term. Bend-
ing energy, BE, and a Jacobian-based penalty term, JAC, are used to prevent
folding and tearing, i.e.,

BE (v) =
1

|Ω|
∑
x∈Ω

3∑
m=1

3∑
n=1

(
∂2v(x)
∂xm∂xn

)2

(5)

JAC (v) =
1

|Ω|
∑
x∈Ω

log2 (det (Jv (x))) (6)

where Ω denotes the finite set of positions on the transformed image lattice at
which the energy is evaluated, and Jv (x) denotes the Jacobian matrix of the
velocity field v evaluated at x. This is similar to the approach of Modat et
al. [13], as the exponential map is only guaranteed to generate a diffeomorphism
when the velocity field is sufficiently smooth.

Our formulation differs from others by the use of a single parametric trans-
formation and only one similarity evaluation as opposed to separate forward and
backward transformations [3,12] or similarity evaluated twice [20]. The method
is similar to that of [11] in that we transform both images half-way and use
a single similarity term. The image similarity is therefore evaluated for images
which are equally affected by the deformation and interpolation. Additionally,
inverse consistency reduces the number of required pairwise registrations.

We use an approximate but fast scaling-and-squaring on the control point
lattice as presented in [13] for the computation of the exponential map (4). Given
the derivative of (3) with respect to νij , we perform a conjugate gradient descent
to find the set of parameters which minimize E.

The NMI gradient is first computed separately for each half transformation as
in [14]. The resulting gradient fields are then added up with their corresponding
weights τ = ±0.5 to obtain the gradient field, δuij . Note that the scaling factor
τ accounts for both the averaging of the separate NMI gradient fields as well as
the inversion of the gradient corresponding to the half backward transformation.
The obtained gradient field is then composed with the current velocity field.
This composition is approximated in the log-domain using the Baker-Campbell-
Hausdorff (BCH) formula [20], i.e.,

δvij = δuij +
1
2

[vij , δuij ] +
1
12

[vij , [vij , δuij ]] (7)

where the first term of the BCH formula is omitted in order to obtain the dif-
ference between the two velocity field estimates. This computation is similar to
the update step of the symmetric LogDemons [20]. By interpolating all vector
fields (incl. the Lie bracket [·, ·]) by cubic B-spline functions with control points
defined on the same lattice as the local velocity field (2), the NMI gradient with
respect to νij is approximated by the spline coefficients of (7).
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The computation of the analytic gradient of the bending energy and the
Jacobian-based penalty is identical to the classical FFD. The derivatives of these
terms are given in [13,14].

2.2 Spatio-Temporal Atlas Construction

To avoid bias of the atlas towards a given anatomical configuration, we create the
spatio-temporal atlas using pairwise inter-subject transformations. All pairwise
transformations are hereby computed using the symmetric and inverse consistent
diffeomorphic registration presented in the previous section. The anatomy of each
subject is mapped by the inverse of the age-dependent Log-Euclidean mean [2]
of the transformations relating it to the other subject anatomies of similar ages.
This average transformation minimizes the weighted sum of squared distances to
the observed inter-subject transformations, given the squared distance between
two diffeomorphisms generated by stationary velocity fields as defined in [2], i.e.,

d2(T1,T2) = ‖ log(T1) − log(T2)‖2 (8)

In particular, given n transformations Tij , which map an anatomical refer-
ence point xi of subject i to their corresponding points xj = Tij(xi) of subjects
j ∈ [1, n] (incl. the identity for j = i), the average transformation which maps
xi to its atlas coordinate at age t is given by

T̄i (t) = exp (v̄i(t)) (9)

where

v̄i(t) =

∑n
j=1 w(tj , t)vij∑n

j=1 w(tj , t)
(10)

with Gaussian kernel weights for the temporal regression, i.e.,

w(tj , t) =
1

σ
√

2π
e

−(tj−t)2

2σ2 (11)

The atlas template of mean shape and mean intensities at age t is then
estimated as the image which minimizes the weighted sum of squared differences
to the observations close to t, after mapping these into the respective atlas
coordinate system, i.e.,

Ī(t) =
∑n

i=1 w(ti, t) Ii ◦ T̄−1
i (t)∑n

i=1 w(ti, t)
(12)

Possibly available hard segmentation labels or probability maps can be trans-
ferred into the atlas space as well, using the computed inverse average trans-
formations. Propagated hard segmentation masks are averaged using the same
weights as in (12) to obtain separate mean probability maps for each class.
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Fig. 1. Cross-sectional and longitudinal perspective on transformations computed dur-
ing the atlas construction. The transformations T̄i(t) (dashed arrows) correspond to
the Log-Euclidean mean of pairwise transformations Tij = T−1

ji (solid arrows in a).
The composite transformations shown in (b) are used to derive a longitudinal growth
model. The non-uniform arrow weights depict the temporal kernel regression weights
w(tj , t).

2.3 Atlas Growth Modeling

Examining the atlas construction as depicted in Fig. 1b, it can be seen that
the anatomical point xi of subject i is mapped by T̄i(t1) to the atlas coordi-
nate (x1, t1), and to (x2, t2) by the transformation T̄i(t2). We therefore define
a separate spatial mapping between two atlas time points for each subject. This
is expressed in terms of the transformations that relate each time point to the
individual as

Gi(t1, t2) = T̄i(t2) ◦ T̄−1
i (t1) (13)

Noting that the transformations are generated by stationary velocity fields
v̄i(t), we utilize the BCH formula [4] once more to approximate the stationary
velocity field gi(t1, t2) which generates the diffeomorphism Gi(t1, t2), i.e.,

gi(t1, t2) ≈ v̄i(t2) − v̄i(t1) (14)

More terms of the BCH formula may be used for a higher approximation order.
The longitudinal velocities gi at the spatio-temporal atlas coordinates gen-

erate the diffeomorphic maps between corresponding points x1 and x2 for the
time interval [t1, t2] in accordance with the previously constructed time series
of template images. We thus obtain the mean deformation between consecutive
atlas time points using the same weights as in (12), i.e.,

G(t1, t2) = exp
(∑n

i=1 w(ti, t1)gi(t1, t2)∑n
i=1 w(ti, t1)

)
= exp (g(t1, t2)) (15)
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It should now be observed that the yet stationary velocity fields g(tk, tk+1),
which generate the diffeomorphic maps between consecutive time points, can be
interpolated also in the time domain. The resulting time-varying spatio-temporal
velocity field is continuous and therefore denoted here by g̃(x, t). This deforma-
tion model enables the computation of point trajectories

x(t2) = x1 +
∫ t2

t1

g̃(x(t), t)dt (16)

for any given initial atlas coordinate (x1, t1). The error arising from the concate-
nation and temporal interpolation of piecewise-stationary velocity fields decreases
with increasing temporal resolution of the previously constructed atlas.

3 Results

3.1 Subjects

We used T2-weighted (T2-w) fast-spin echo images of 118 neonates acquired on a
3T Philips Intera system with MR sequence parameters TR=1712 ms, TE=160
ms, flip angle 90◦ and voxel size 0.86×0.86×1mm3. These images were randomly
selected from 445 subjects, with at most 10 subjects from each week gestational
age (GA) to reduce the number of pairs to register. This selection resulted in
a close to uniform age at scan distribution. The age range at time of scan was
27.14 to 49.86 weeks GA, with mean and standard deviation of 36.40±5.70 weeks
GA. The average age at birth was 29.14±3.22, range 24.29-39.71 weeks GA. Out
of 118 subjects, 66 were female, and 52 male.

(a) (b) (c) (d)

Fig. 2. Comparison of T2-w templates and white matter maps at 42 weeks GA. The
images were created in [18] using the arithmetic mean of FFDs (a)(b) and by our
method using the Log-Euclidean mean of diffeomorphisms (c)(d).
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3.2 Neonatal Brain Atlas

From the randomly selected subset of neonatal brain MR images, we constructed
an atlas consisting of a time series of mean T2-w template images and corre-
sponding tissue probability maps for the age range 28–44 weeks GA at regular
time points for each week. Exemplary axial slices of these mean images are shown
in Fig. 3 for qualitative assessment.

A comparison of the T2-w atlas template at age 42 weeks GA to the one
created by Serag et al. [18], based on the arithmetic mean of FFDs, is given by
Fig. 2. Our method notably captures the cortical folds of the frontal lobe with
more detail, even though more images contributed to the average. As noted
in [18], Serag et al. use on average 15–19 images per time point for the atlas
construction, whereas given our dataset and a kernel width σ = 0.5 weeks, the
proposed approach uses 19–28 images per time point, where images with kernel
weight below 1% are not considered for the average. It should be noted that we
used a constant kernel width because of the close to uniform age distribution
of our randomly selected subjects, in which case also the subdivision algorithm
used in [18] would result in a nearly constant kernel width. An adaptive kernel
width may be used in case of a non-uniform sample distribution. It should also
be noted, that the atlas created by Serag et al. was created from a different
subset of available neonatal brain images than the atlas presented in Fig. 3.

Fig. 3. T2-w templates, cortical grey matter, and white matter maps of our atlas
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3.3 Brain Growth Model

We estimated the longitudinal velocities, g(tk, tk+1), from the subject- and age-
dependent average velocity fields which were also used to compute the time
series of mean template images of the atlas. These stationary velocity fields were
interpolated in both space and time by a cubic B-spline in order to obtain a
continuous spatio-temporal growth model. We then used this deformation model
to transform the mean tissue probability maps of the atlas at 44 weeks GA
backward in time using the computed longitudinal point trajectories. As the
longitudinal growth model is diffeomorphic, the probability maps from 28 weeks
GA (or any other time point) could also be propagated forward (and backward)
in time, which would result in very similar deformed tissue maps because the
point trajectories given by (16) only differ by a small error resulting from the
numerical integration. The decision to propagate the probability maps backwards
in time has the advantage of a lower interpolation error close to anatomical
boundaries due to the higher detail and bigger scale of the anatomy at later time
points. From the propagated probability maps, we extracted the total volume
of brain tissue and the cortical grey matter volume at one week intervals. The
measured volumes, plotted against age at scan in Fig. 4, exhibit a Gompertz
like growth pattern with a high R2 value of 0.996 in both cases. This finding
is in agreement with the results in [21], where cortical folding of fetuses was
measured instead of cortical grey matter volume of preterm born neonates. While
a cubic polynomial yielded a similar good fit for our measured brain volumes, we
chose the Gompertz function because it has better extrapolation properties and
was demonstrated to model the evolution of cortical folding during early brain
development better than linear or quadratic polynomial functions [21].
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Fig. 4. Mean volumes of brain tissue and cortical grey matter plotted against age
at time of scan. The volumes were extracted from the mean tissue probability maps
at age 44 weeks GA, after propagating these backward in time using our continuous
longitudinal growth model. A Gompertz function (solid line) was fitted to the data
points and 99% confidence intervals (dashed lines) are shown.
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4 Conclusions

We presented a method for the construction of a spatio-temporal atlas of high
anatomical detail based on the Log-Euclidean mean of transformations which
belong to the one-parameter subgroup of diffeomorphisms. We also utilized the
numerous pairwise inter-subject transformations used to construct the atlas time
series to derive a longitudinal deformation model of mean growth. This avoids
additional intensity-driven registration of the atlas time points. A longitudinal
registration of the template images has to account for the MR intensity changes
which are associated with the ongoing myelination and other processes during
early brain development such that these are not reflected in the deformation.
By opportunely combining the cross-sectional transformations which map the
individual to each atlas time point, we obtain a mean growth model directly
from the inter-subject registrations. While the atlas itself captures brain growth
only at discrete time points, our continuous growth model allows the analysis of
growth trajectories between any two time points of the captured age range.

Compared to the first months after birth, the MR intensity changes are rela-
tively moderate within the neonatal age range that we focused on in this work.
The NMI similarity measure used for the pairwise registrations is, however, a
well-established image similarity measure in inter-subject and multi-modality
image registration [16]. It has demonstrated to be robust to wide intensity varia-
tions and could thus be employed for the construction of a spatio-temporal atlas
from infant brain images. Pairwise registrations are also only required between
images of similar ages due to the limited support of the regression kernel.
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